OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3033–3042

Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes

W. Neil Charman, Adnan, and David A. Atchison  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 12, pp. 3033-3042 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.

© 2012 OSA

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Ophthalmology Applications

Original Manuscript: July 27, 2012
Revised Manuscript: October 6, 2012
Manuscript Accepted: October 16, 2012
Published: October 31, 2012

W. Neil Charman, Adnan, and David A. Atchison, "Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes," Biomed. Opt. Express 3, 3033-3042 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Duke-Elder, “Changes in refraction in diabetes mellitus,” Br. J. Ophthalmol.9(4), 167–187 (1925). [CrossRef] [PubMed]
  2. N. G. M. Wiemer, M. Dubbelman, P. J. Ringens, and B. C. Polak, “Measuring the refractive properties of the diabetic eye during blurred vision and hyperglycaemia using aberrometry and Scheimpflug imaging,” Acta Ophthalmol. (Copenh.)87(2), 176–182 (2009). [CrossRef] [PubMed]
  3. N. Brown and J. Hungerford, “The influence of the size of the lens in ocular disease,” Trans. Ophthalmol. Soc. U. K.102(Pt 3), 359–363 (1982). [PubMed]
  4. J. M. Sparrow, A. J. Bron, N. A. Brown, and H. A. Neil, “Biometry of the crystalline lens in early-onset diabetes,” Br. J. Ophthalmol.74(11), 654–660 (1990). [CrossRef] [PubMed]
  5. N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of chronic diabetes mellitus on the thickness and the shape of the anterior and posterior surface of the cornea,” Cornea26(10), 1165–1170 (2007). [CrossRef] [PubMed]
  6. N. G. M. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. P. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology115(10), 1679–1686 (2008). [CrossRef] [PubMed]
  7. N. G. M. Wiemer, M. Dubbelman, E. A. Hermans, P. J. Ringens, and B. C. P. Polak, “Changes in the internal structure of the human crystalline lens with diabetes mellitus type 1 and type 2,” Ophthalmology115(11), 2017–2023 (2008). [CrossRef] [PubMed]
  8. B. Huntjens and C. O’Donnell, “Refractive error changes in diabetes mellitus,” Optom. Practice7, 103–114 (2006).
  9. Y. Saito, G. Ohmi, S. Kinoshita, Y. Nakamura, K. Ogawa, S. Harino, and M. Okada, “Transient hyperopia with lens swelling at initial therapy in diabetes,” Br. J. Ophthalmol.77(3), 145–148 (1993). [CrossRef] [PubMed]
  10. F. Okamoto, H. Sone, T. Nonoyama, and S. Hommura, “Refractive changes in diabetic patients during intensive glycaemic control,” Br. J. Ophthalmol.84(10), 1097–1102 (2000). [CrossRef] [PubMed]
  11. V. K. Srivastava, “Acute incapacitating hyperopia during hypoglycemic treatment,” Med. J. Armed Forces India59(4), 353–354 (2003). [CrossRef]
  12. S. F. Lin, P. K. Lin, F. L. Chang, and R. K. Tsai, “Transient hyperopia after intensive treatment of hyperglycemia in newly diagnosed diabetes,” Ophthalmologica223(1), 68–71 (2009). [CrossRef] [PubMed]
  13. C. Giusti, “Transient hyperopic refractive changes in newly diagnosed juvenile diabetes,” Swiss Med. Wkly.133(13-14), 200–205 (2003). [PubMed]
  14. H.-Y. Li, G.-C. Luo, J. Guo, and Z. Liang, “Effects of glycemic control on refraction in diabetic patients,” Int. J. Ophthalmol.3(2), 158–160 (2010). [PubMed]
  15. N. G. M. Wiemer, E. M. Eekhoff, S. Simsek, R. J. Heine, P. J. Ringens, B. C. P. Polak, and M. Dubbelman, “The effect of acute hyperglycemia on retinal thickness and ocular refraction in healthy subjects,” Graefes Arch. Clin. Exp. Ophthalmol.246(5), 703–708 (2008). [CrossRef] [PubMed]
  16. G. Gwinup and A. Villarreal, “Relationship of serum glucose concentration to changes in refraction,” Diabetes25(1), 29–31 (1976). [CrossRef] [PubMed]
  17. W. N. Charman, “Optical modelling of the possible origins of transient refractive changes in diabetic patients,” Ophthalmic Physiol. Opt.32(6), 485–491 (2012). [CrossRef] [PubMed]
  18. A. J. Bron, J. Sparrow, N. A. P. Brown, J. J. Harding, and R. Blakytny, “The lens in diabetes,” Eye (Lond.)7(2), 260–275 (1993). [CrossRef] [PubMed]
  19. A. J. Bron, N. A. P. Brown, J. J. Harding, and E. Ganea, “The lens and cataract in diabetes,” Int. Ophthalmol. Clin.38(2), 37–67 (1998). [PubMed]
  20. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  21. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008). [CrossRef] [PubMed]
  22. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” Proc. SPIE2925, 118–142 (1996). [CrossRef]
  23. P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, and V. A. Lucas, “Aqueous humour glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res.39(5), 605–609 (1984). [CrossRef] [PubMed]
  24. N. G. M. Wiemer and M. Dubbelman, “Reply to comment by Morteza Mehdizadeh on the publication ‘The effect of acute hyperglycaemia on retinal thickness and ocular refraction in healthy subjects’,” Graefes Arch. Clin. Exp. Ophthalmol.246(8), 1201–1202 (2008). [CrossRef]
  25. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9(12), 2111–2117 (1992). [CrossRef] [PubMed]
  26. M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17(5), 055001 (2012). [CrossRef] [PubMed]
  27. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000), p.251.
  28. S. Roxburgh, “The conundrum of sweet hyperopia,” Br. J. Ophthalmol.84(10), 1088–1089 (2000). [CrossRef] [PubMed]
  29. A. Huggert, “The appearance of the crystalline lens during different stages of transitory changes of refraction. II,” Acta Ophthalmol. (Copenh.)32(4), 375–389 (1954). [CrossRef] [PubMed]
  30. J. T. Planten, “Changes of refraction in the adult eye due to changing refractive indices of the layers of the lens,” Ophthalmologica183(2), 86–90 (1981). [CrossRef] [PubMed]
  31. D. J. Coleman, F. L. Lizzi, L. A. Franzen, and D. H. Abramson, “A determination of the velocity of ultrasound in cataractous lenses,” Bibl. Ophthalmol.83(83), 246–251 (1975). [PubMed]
  32. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited