OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3067–3086

Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

Dong-hak Choi, Hideaki Hiro-Oka, Kimiya Shimizu, and Kohji Ohbayashi  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 12, pp. 3067-3086 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

Original Manuscript: August 2, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 21, 2012
Published: November 1, 2012

Dong-hak Choi, Hideaki Hiro-Oka, Kimiya Shimizu, and Kohji Ohbayashi, "Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second," Biomed. Opt. Express 3, 3067-3086 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007). [CrossRef] [PubMed]
  3. D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express17(2), 784–796 (2009). [CrossRef] [PubMed]
  4. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006). [CrossRef] [PubMed]
  5. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express14(2), 736–748 (2006). [CrossRef] [PubMed]
  6. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express16(16), 12313–12333 (2008). [CrossRef] [PubMed]
  7. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009). [CrossRef] [PubMed]
  8. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express1(3), 798–811 (2010). [CrossRef] [PubMed]
  9. T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009). [CrossRef] [PubMed]
  10. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005). [CrossRef] [PubMed]
  11. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010). [CrossRef] [PubMed]
  12. H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express2(11), 3129–3134 (2011). [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  14. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  15. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  16. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  18. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010). [CrossRef] [PubMed]
  19. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  20. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  21. R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011). [CrossRef] [PubMed]
  22. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett.33(12), 1318–1320 (2008). [CrossRef] [PubMed]
  23. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009). [CrossRef] [PubMed]
  24. J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008). [CrossRef] [PubMed]
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008). [CrossRef] [PubMed]
  26. A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009). [CrossRef] [PubMed]
  27. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009). [CrossRef] [PubMed]
  28. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49(25), 4756–4762 (2010). [CrossRef] [PubMed]
  29. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010). [CrossRef] [PubMed]
  30. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010). [CrossRef] [PubMed]
  31. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011). [CrossRef] [PubMed]
  32. J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010). [CrossRef] [PubMed]
  33. M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).
  34. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  35. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  36. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).
  37. V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011). [CrossRef] [PubMed]
  38. B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).
  39. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005). [CrossRef] [PubMed]
  40. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008). [CrossRef] [PubMed]
  41. “CUDA Toolkit 3.1 Downloads,” http://developer.nvidia.com/cuda-toolkit-31-downloads .
  42. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989). [CrossRef]
  43. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).
  44. Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2875 KB)     
» Media 2: AVI (3138 KB)     
» Media 3: AVI (3297 KB)     
» Media 4: AVI (3681 KB)     
» Media 5: AVI (3572 KB)     
» Media 6: AVI (3847 KB)     
» Media 7: AVI (3899 KB)     
» Media 8: AVI (3629 KB)     
» Media 9: AVI (2388 KB)     
» Media 10: AVI (4035 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited