OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3087–3104

A 3D glass optrode array for optical neural stimulation

T.V.F. Abaya, S. Blair, P. Tathireddy, L. Rieth, and F. Solzbacher  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3087-3104 (2012)
http://dx.doi.org/10.1364/BOE.3.003087


View Full Text Article

Enhanced HTML    Acrobat PDF (1993 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents optical characterization of a first-generation SiO2 optrode array as a set of penetrating waveguides for both optogenetic and infrared (IR) neural stimulation. Fused silica and quartz discs of 3-mm thickness and 50-mm diameter were micromachined to yield 10 × 10 arrays of up to 2-mm long optrodes at a 400-μm pitch; array size, length and spacing may be varied along with the width and tip angle. Light delivery and loss mechanisms through these glass optrodes were characterized. Light in-coupling techniques include using optical fibers and collimated beams. Losses involve Fresnel reflection, coupling, scattering and total internal reflection in the tips. Transmission efficiency was constant in the visible and near-IR range, with the highest value measured as 71% using a 50-μm multi-mode in-coupling fiber butt-coupled to the backplane of the device. Transmittance and output beam profiles of optrodes with different geometries was investigated. Length and tip angle do not affect the amount of output power, but optrode width and tip angle influence the beam size and divergence independently. Finally, array insertion in tissue was performed to demonstrate its robustness for optical access in deep tissue.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(220.4610) Optical design and fabrication : Optical fabrication
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Novel Light Sources, Optics, and Detectors

History
Original Manuscript: August 9, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 23, 2012
Published: November 1, 2012

Virtual Issues
January 29, 2013 Spotlight on Optics

Citation
T.V.F. Abaya, S. Blair, P. Tathireddy, L. Rieth, and F. Solzbacher, "A 3D glass optrode array for optical neural stimulation," Biomed. Opt. Express 3, 3087-3104 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3087


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Deisseroth, “Optogenetics,” Nat. Methods8, 26–29 (2011). [CrossRef]
  2. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003). [CrossRef] [PubMed]
  3. F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007). [CrossRef] [PubMed]
  4. F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008). [CrossRef] [PubMed]
  5. J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009). [CrossRef] [PubMed]
  6. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005). [CrossRef] [PubMed]
  7. X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005). [CrossRef] [PubMed]
  8. T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006). [CrossRef]
  9. G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005). [CrossRef] [PubMed]
  10. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005). [CrossRef] [PubMed]
  11. R. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171, 907–908 (1971). [CrossRef] [PubMed]
  12. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005). [CrossRef]
  13. A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007). [CrossRef]
  14. M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010). [CrossRef]
  15. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011). [CrossRef] [PubMed]
  16. N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007). [CrossRef]
  17. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007). [CrossRef] [PubMed]
  18. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012). [CrossRef] [PubMed]
  19. J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009). [CrossRef] [PubMed]
  20. J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012). [CrossRef]
  21. A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011). [CrossRef] [PubMed]
  22. N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009). [CrossRef] [PubMed]
  23. H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011). [CrossRef] [PubMed]
  24. N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010). [CrossRef]
  25. O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011). [CrossRef] [PubMed]
  26. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003). [CrossRef]
  27. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  28. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011). [CrossRef] [PubMed]
  29. A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007). [CrossRef] [PubMed]
  30. A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007). [CrossRef] [PubMed]
  31. F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010). [CrossRef] [PubMed]
  32. A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011). [CrossRef] [PubMed]
  33. A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010). [CrossRef] [PubMed]
  34. P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012). [CrossRef]
  35. J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012). [CrossRef]
  36. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009). [CrossRef] [PubMed]
  37. S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010). [CrossRef] [PubMed]
  38. V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007). [CrossRef] [PubMed]
  39. E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012). [CrossRef] [PubMed]
  40. A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010). [CrossRef] [PubMed]
  41. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012). [CrossRef] [PubMed]
  42. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012). [CrossRef]
  43. G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012). [CrossRef]
  44. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010). [CrossRef]
  45. P. Srinivasan, J. Fred, R. Beyette, and I. Papautsky, “Micromachined arrays of cantilevered glass probes,” Appl. Opt.43, 776–782 (2004). [CrossRef] [PubMed]
  46. M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  47. Cargille Labs, “Cargille Laboratories refractive index fluid typical characteristics sheet”.
  48. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, 2002).
  49. D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
  50. H. Bennett, “Scattering characteristics of optical materials,” Opt. Eng.17, 480–488 (1978).
  51. N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370. [CrossRef]
  52. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008). [CrossRef]
  53. V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited