OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3105–3118

Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

Yong Huang, Xuan Liu, Cheol Song, and Jin U. Kang  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3105-3118 (2012)
http://dx.doi.org/10.1364/BOE.3.003105


View Full Text Article

Enhanced HTML    Acrobat PDF (4668 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A motion-compensated, hand-held, common-path, Fourier-domain optical coherence tomography imaging probe has been developed for image-guided intervention during microsurgery. A hand-held prototype instrument was achieved by integrating an imaging fiber probe inside a stainless steel needle and attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Real-time data acquisition, processing, motion compensation, and image visualization and saving were implemented on a custom CPU-GPU hybrid architecture. We performed 10× zero padding to the raw spectrum to obtain 0.16 µm position accuracy with a compensation rate of 460 Hz. The root-mean-square error of hand-held distance variation from target position was measured to be 2.93 µm. We used a cross-correlation maximization-based shift correction algorithm for topology correction. To validate the system, we performed free-hand OCT M-scan imaging using various samples.

© 2012 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Image Processing

History
Original Manuscript: September 11, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: October 29, 2012
Published: November 1, 2012

Citation
Yong Huang, Xuan Liu, Cheol Song, and Jin U. Kang, "Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention," Biomed. Opt. Express 3, 3105-3118 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. E. Bouma, Handbook of Optical Coherence Tomography (New York: Marcel Dekker, 2001).
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  4. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat.84(2), 85–97 (2004). [CrossRef] [PubMed]
  5. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009). [CrossRef] [PubMed]
  6. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express17(10), 8125–8136 (2009). [CrossRef] [PubMed]
  7. J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. A. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt.17(8), 081403 (2012). [CrossRef]
  8. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  9. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  10. B. C. Becker, R. A. MacLachlan, and C. N. Riviere, “State estimation and feedforward tremor suppression for a handheld micromanipulator with a Kalman filter,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2011), pp. 5160–5165.
  11. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997). [CrossRef] [PubMed]
  12. W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005). [CrossRef]
  13. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. H. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008). [CrossRef] [PubMed]
  14. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express18(14), 14375–14384 (2010). [CrossRef] [PubMed]
  15. H. C. Park, C. Song, M. Kang, Y. Jeong, and K. H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012). [CrossRef] [PubMed]
  16. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express20(15), 16567–16583 (2012). [CrossRef]
  17. S. P. N. Singh and C. N. Riviere, “Physiological tremor during retinal microsurgery,” in Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference, 2002 (IEEE, 2002), pp. 171–172.
  18. N. V. Iftimia, B. E. Bouma, J. F. de Boer, B. H. Park, B. Cense, and G. J. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Express12(17), 4025–4034 (2004). [CrossRef] [PubMed]
  19. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express15(25), 16808–16817 (2007). [CrossRef] [PubMed]
  20. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  21. Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt.16(12), 126005 (2011). [CrossRef] [PubMed]
  22. J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010). [CrossRef] [PubMed]
  23. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express17(4), 2375–2384 (2009). [CrossRef] [PubMed]
  24. K. Zhang, W. Wang, J. H. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009). [CrossRef] [PubMed]
  25. K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011). [CrossRef] [PubMed]
  26. C. Song, P. Gehlbach, and J. U. Kang, “Active Tremor Cancellation by a “Smart” Handheld Vitreoretinal Microsurgical Tool Using Swept Source Optical Coherence Tomography,” Opt. Express20(21), 23414–23421 (2012). [CrossRef]
  27. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009). [CrossRef] [PubMed]
  28. Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express3(9), 2162–2174 (2012). [CrossRef] [PubMed]
  29. Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011). [CrossRef]
  30. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  31. J. Y. Ha, M. Shishkov, M. Colice, W. Y. Oh, H. Yoo, L. Liu, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in catheter-based optical frequency domain imaging,” Opt. Express18(11), 11418–11427 (2010). [CrossRef] [PubMed]
  32. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express19(22), 21258–21270 (2011). [CrossRef] [PubMed]
  33. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993). [CrossRef] [PubMed]
  34. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012). [CrossRef] [PubMed]
  35. D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt.6(4), 418–426 (2001). [CrossRef] [PubMed]
  36. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron.18(3), 1184–1191 (2012). [CrossRef]
  37. D. Lorenser, X. Yang, and D. D. Sampson, “Ultrathin fiber probes with extended depth of focus for optical coherence tomography,” Opt. Lett.37(10), 1616–1618 (2012). [CrossRef] [PubMed]
  38. M. T. Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited