OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3119–3126

Surface plasmon resonance as detection tool for lipids lateral mobility in biomimetic membranes

Giancarlo Margheri, Riccardo D’Agostino, Lucia Becucci, Rolando Guidelli, Bruno Tiribilli, and Mario Del Rosso  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3119-3126 (2012)
http://dx.doi.org/10.1364/BOE.3.003119


View Full Text Article

Enhanced HTML    Acrobat PDF (1253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A procedure based on surface plasmon resonance (SPR) is proposed to monitor the lateral mobility of lipid molecules in solid-supported bilayer lipid membranes (ssBLMs), an essential prerequisite for the formation of important microdomains called lipid rafts (LRs). The procedure relies on the marked tendency of the ganglioside GM1 to be recruited by LRs and to act as a specific receptor of the beta-subunit of the cholera toxin (ChTB). In the presence of both GM1 and ChTB, spontaneous formation of lipid rafts domains in mobile ssBLMs is accompanied by an appreciable increase in the amount of adsorbed ChTB, as monitored by SPR.

© 2012 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Biophysics

History
Original Manuscript: June 8, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: August 1, 2012
Published: November 6, 2012

Citation
Giancarlo Margheri, Riccardo D’Agostino, Lucia Becucci, Rolando Guidelli, Bruno Tiribilli, and Mario Del Rosso, "Surface plasmon resonance as detection tool for lipids lateral mobility in biomimetic membranes," Biomed. Opt. Express 3, 3119-3126 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002). [CrossRef] [PubMed]
  2. Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980). [CrossRef] [PubMed]
  3. N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980). [CrossRef] [PubMed]
  4. B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004). [CrossRef] [PubMed]
  5. R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004). [CrossRef] [PubMed]
  6. C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002). [CrossRef] [PubMed]
  7. R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003). [CrossRef] [PubMed]
  8. D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002). [CrossRef] [PubMed]
  9. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976). [CrossRef] [PubMed]
  10. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005). [CrossRef] [PubMed]
  11. I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005). [CrossRef] [PubMed]
  12. T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003). [CrossRef] [PubMed]
  13. L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008). [CrossRef]
  14. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  15. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009). [CrossRef] [PubMed]
  16. I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci.62(19-20), 2283–2294 (2005). [CrossRef] [PubMed]
  17. G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996). [CrossRef] [PubMed]
  18. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001). [CrossRef] [PubMed]
  19. A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001). [CrossRef] [PubMed]
  20. S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993). [CrossRef]
  21. L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009). [CrossRef] [PubMed]
  22. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003). [CrossRef] [PubMed]
  23. L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005). [CrossRef] [PubMed]
  24. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997). [CrossRef] [PubMed]
  25. J. Stepanek, H. Vaisocherova, and M. Piliarick, Surface Plasmon Resonance Based Sensors (Springer, 2006), Chap. 4.
  26. T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995). [CrossRef] [PubMed]
  27. C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997). [CrossRef] [PubMed]
  28. W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987) [PubMed]
  29. J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited