OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3153–3160

A liquid optical phantom with tissue-like heterogeneities for confocal microscopy

Danni Wang, Ye Chen, and Jonathan T. C. Liu  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 12, pp. 3153-3160 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phantoms play an important role in the development, standardization, and calibration of biomedical imaging devices in laboratory and clinical settings, serving as standards to assess the performance of such devices. Here we present the design of a liquid optical phantom to facilitate the assessment of optical-sectioning microscopes that are being developed to enable point-of-care pathology. This phantom, composed of silica microbeads in an Intralipid base, is specifically designed to characterize a reflectance-based dual-axis confocal (DAC) microscope for skin imaging. The phantom mimics the scattering properties of normal human epithelial tissue in terms of an effective scattering coefficient and a depth-dependent degradation in spatial resolution due to beam steering caused by tissue micro-architectural heterogeneities.

© 2012 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: September 11, 2012
Revised Manuscript: November 1, 2012
Manuscript Accepted: November 5, 2012
Published: November 7, 2012

Danni Wang, Ye Chen, and Jonathan T. C. Liu, "A liquid optical phantom with tissue-like heterogeneities for confocal microscopy," Biomed. Opt. Express 3, 3153-3160 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. C. Liu, N. O. Loewke, M. J. Mandella, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Point-of-care pathology with miniature microscopes,” Anal Cell Pathol (Amst)34(3), 81–98 (2011). [PubMed]
  2. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng.40(2), 378–397 (2012). [CrossRef] [PubMed]
  3. R. Nordstrom, “Phantoms as Standards in Optical Measurements,” Proc. SPIE7906, 79060H, 79060H-5 (2011). [CrossRef]
  4. J. Hwang, J. C. Ramella-Roman, and R. Nordstrom, “Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices,” Biomed. Opt. Express3(6), 1399–1403 (2012). [CrossRef] [PubMed]
  5. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  6. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006). [CrossRef] [PubMed]
  7. S. L. Jacques, B. Wang, and R. Samatham, “Reflectance confocal microscopy of optical phantoms,” Biomed. Opt. Express3(6), 1162–1172 (2012). [CrossRef] [PubMed]
  8. L. Luu, P. A. Roman, S. A. Mathews, and J. C. Ramella-Roman, “Microfluidics based phantoms of superficial vascular network,” Biomed. Opt. Express3(6), 1350–1364 (2012). [CrossRef] [PubMed]
  9. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012). [CrossRef] [PubMed]
  10. R. C. Chang, P. Johnson, C. M. Stafford, and J. Hwang, “Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials,” Biomed. Opt. Express3(6), 1326–1339 (2012). [CrossRef] [PubMed]
  11. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  12. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt.13(3), 034020 (2008). [CrossRef] [PubMed]
  13. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  14. J. T. LaCroix and M. A. Haidekker, “Quantifying light scattering with single-mode fiber -optic confocal microscopy,” BMC Med. Imaging9(1), 19 (2009). [CrossRef] [PubMed]
  15. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  16. A. Kienle, F. K. Forster, and R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett.29(22), 2617–2619 (2004). [CrossRef] [PubMed]
  17. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol.42(10), 1971–1979 (1997). [CrossRef] [PubMed]
  18. P. J. Dwyer, C. A. DiMarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett.31(7), 942–944 (2006). [CrossRef] [PubMed]
  19. M. Rajadhyaksha, “Confocal microscopy of skin cancers: translational advances toward clinical utility,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (IEEE, 2009), pp. 3231–3233.
  20. K. N. Liou, “A complementary theory of light scattering by homogeneous spheres,” Appl. Math. Comput.3(4), 331–358 (1977). [CrossRef]
  21. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, New York, 2006).
  22. F. O. Fahrbach and A. Rohrbach, “A line scanned light-sheet microscope with phase shaped self-reconstructing beams,” Opt. Express18(23), 24229–24244 (2010). [CrossRef] [PubMed]
  23. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat Commun3, 632 (2012). [CrossRef] [PubMed]
  24. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012). [CrossRef] [PubMed]
  25. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011). [CrossRef] [PubMed]
  26. J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. M. Crawford, C. H. Contag, G. S. Kino, and T. D. Wang, “Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia,” J. Biomed. Opt.11(5), 054019 (2006). [CrossRef] [PubMed]
  27. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, “Determination of epithelial tissue scattering coefficient using confocal microscopy,” IEEE J. Sel. Top. Quantum Electron.9(2), 307–313 (2003). [CrossRef]
  28. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  29. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett.37(12), 2430–2432 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited