OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3190–3202

Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography

Shiping Li and Jingang Zhong  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 12, pp. 3190-3202 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface plasmon resonance imaging technique provides a tool that allows high-throughput analysis and real-time kinetic measurement. A simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging method is presented. The amplitude-contrast and phase-contrast images are simultaneously obtained by use of digital holography. The detection sensitivity of amplitude-contrast imaging and phase-contrast imaging can compensate for each other. Thus, the detectable sample components may cover a wider range of refractive index values for the simultaneous amplitude-contrast and phase-contrast imaging method than for the phase-contrast imaging method or amplitude-contrast imaging method. A detailed description of the theory and an experiment of monitoring the evaporation process of a drop of NaCl injection in real time are presented. In addition, the amplitude-contrast image has less coherent noise by digital holography.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(240.6680) Optics at surfaces : Surface plasmons
(090.1995) Holography : Digital holography

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: September 11, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: November 4, 2012
Published: November 8, 2012

Shiping Li and Jingang Zhong, "Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography," Biomed. Opt. Express 3, 3190-3202 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron.22(5), 644–648 (2006). [CrossRef] [PubMed]
  2. V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging,” Anal. Chem.76(24), 7257–7262 (2004). [CrossRef] [PubMed]
  3. J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron.23(6), 839–844 (2008). [CrossRef] [PubMed]
  4. B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature332(6165), 615–617 (1988). [CrossRef]
  5. R. Thariani and P. Yager, “Novel, high-quality surface plasmon resonance microscopy,” Sens. Actuators B Chem.130(2), 765–770 (2008). [CrossRef]
  6. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface Plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999). [CrossRef]
  7. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett.76(13), 1665–1667 (2000). [CrossRef]
  8. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem.83(7), 2801–2806 (2011). [CrossRef] [PubMed]
  9. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express17(23), 21191–21204 (2009). [CrossRef] [PubMed]
  10. C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron.24(4), 606–612 (2008). [CrossRef] [PubMed]
  11. E. Suraniti, E. Sollier, R. D. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip7(9), 1206–1208 (2007). [CrossRef] [PubMed]
  12. Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron.26(2), 674–681 (2010). [CrossRef] [PubMed]
  13. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999). [CrossRef] [PubMed]
  14. C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt.15(5), 056015 (2010). [CrossRef] [PubMed]
  15. K. S. Birdi, D. T. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989). [CrossRef]
  16. N. Shahidzadeh-Bonn, S. Rafaï, A. Azouni, and D. Bonn, “Evaporating droplets,” J. Fluid Mech.549(-1), 307–313 (2006). [CrossRef]
  17. T. Kajiya and M. Doi, “Dynamics of Drying Process of Polymer Solution Droplets: Analysis of Polymer Transport and Control of Film Profiles,” J. Soc. Rheol. Jpn.39(1_2), 17–28 (2011). [CrossRef]
  18. F. Schönfeld, K. H. Graf, S. Hardt, and H. J. Butt, “Evaporation dynamics of sessile liquid drops in still air with constant contact radius,” Int. J. Heat Mass Transfer51(13-14), 3696–3699 (2008). [CrossRef]
  19. X. Caide and S.-F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem.66(1-3), 174–177 (2000). [CrossRef]
  20. S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt.10(3), 034005 (2005). [CrossRef] [PubMed]
  21. D. Boecker, A. Zybin, V. Horvatic, C. Grunwald, and K. Niemax, “Differential surface plasmon resonance imaging for high-throughput bioanalyses,” Anal. Chem.79(2), 702–709 (2007). [CrossRef] [PubMed]
  22. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002). [CrossRef]
  23. R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977). [CrossRef]
  24. W. M. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt.27(16), 3341–3343 (1988). [CrossRef] [PubMed]
  25. Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng.46(9), 666–670 (2008). [CrossRef]
  26. Z. Bai, Z. Liu, and H. Xu, “An experienced formula about the connection of refraction index and consistence of several liquid,” J. Yanan Univ.23(1), 33–34 (2004) (Natural Science Edition).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (6208 KB)     
» Media 2: MOV (6265 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited