OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3211–3222

A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays

Sulochana Dhar, Justin Y. Lo, Gregory M. Palmer, Martin A. Brooke, Brandon S. Nichols, Bing Yu, Nirmala Ramanujam, and Nan M. Jokerst  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3211-3222 (2012)
http://dx.doi.org/10.1364/BOE.3.003211


View Full Text Article

Enhanced HTML    Acrobat PDF (2565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse reflectance spectroscopy (DRS) is a well-established method to quantitatively distinguish between benign and cancerous tissue for tumor margin assessment. Current multipixel DRS margin assessment tools are bulky fiber-based probes that have limited scalability. Reported herein is a new approach to multipixel DRS probe design, which utilizes direct detection of the DRS signal by using optimized custom photodetectors in direct contact with the tissue. This first fiberless DRS imaging system for tumor margin assessment consists of a 4 × 4 array of annular silicon photodetectors and a constrained free-space light delivery tube optimized to deliver light across a 256 mm2 imaging area. This system has 4.5 mm spatial resolution. The signal-to-noise ratio measured for normal and malignant breast tissue-mimicking phantoms was 35 dB to 45 dB for λ = 470 nm to 600 nm.

© 2012 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Clinical Instrumentation

History
Original Manuscript: September 27, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: November 7, 2012
Published: November 8, 2012

Citation
Sulochana Dhar, Justin Y. Lo, Gregory M. Palmer, Martin A. Brooke, Brandon S. Nichols, Bing Yu, Nirmala Ramanujam, and Nan M. Jokerst, "A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays," Biomed. Opt. Express 3, 3211-3222 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008). [CrossRef] [PubMed]
  2. L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009). [CrossRef] [PubMed]
  3. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997). [CrossRef] [PubMed]
  4. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  5. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  6. N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012). [CrossRef] [PubMed]
  7. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009). [CrossRef] [PubMed]
  8. SUROS, “New method for breast cancer diagnosis,” 2003, http://www2.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/11-25-2003/0002065545&EDATE= .
  9. L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008). [CrossRef] [PubMed]
  10. T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006). [CrossRef] [PubMed]
  11. G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005). [PubMed]
  12. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010). [CrossRef] [PubMed]
  13. H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010). [CrossRef] [PubMed]
  14. J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009). [CrossRef] [PubMed]
  15. B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008). [CrossRef] [PubMed]
  16. S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010). [CrossRef]
  17. J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.
  18. J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012). [CrossRef]
  19. S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1: Process Technology (Lattice, 1999).
  20. M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001). [CrossRef]
  21. S. Dhar, J. Y. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2011), pp. 440–443.
  22. S. Dhar, J. Y. Lo, B. Yu, T. Tyler, M. A. Brooke, T. F. Kuech, N. Ramanujam, and N. M. Jokerst, “A custom wide-field spectral imager for breast cancer margin assessment,” in 2011 IEEE Photonics Conference (PHO) (IEEE, 2011), pp. 798–799.
  23. Asahi Spectra, “MAX-302 xenon light source 300W technical information,” http://www.gmp.ch/htmlarea/pdf/asahi_pdf/max302techinfo.pdf .
  24. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  25. Texas Instruments, “IVC102 precision switched integrator transimpedance amplifier,” http://www.ti.com/product/ivc102 .
  26. PICAXE microcontroller, available from http://www.picaxe.com/ .
  27. T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).
  28. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed (Pergamon, Oxford, 1980).
  30. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt.21(6), 1069–1072 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited