OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3250–3263

Detecting axial heterogeneity of birefringence in layered turbid media using polarized light imaging

Sanaz Alali, Yuting Wang, and I. Alex Vitkin  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3250-3263 (2012)
http://dx.doi.org/10.1364/BOE.3.003250


View Full Text Article

Enhanced HTML    Acrobat PDF (4120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The structural anisotropy of biological tissues can be quantified using polarized light imaging in terms of birefringence; however, birefringence varies axially in anisotropic layered tissues. This may present ambiguity in result interpretation for techniques whose birefringence results are averaged over the sampling volume. To explore this issue, we extended the polarization sensitive Monte Carlo code to model bi-layered turbid media with varying uniaxial birefringence in the two layers. Our findings demonstrate that the asymmetry degree (ASD) between the off-diagonal Mueller matrix elements of heterogeneously birefringent samples is higher than the homogenously birefringent (uniaxial) samples with the same effective retardance (magnitude and orientation). We experimentally verified the validity of ASD as a birefringence heterogeneity measure by performing polarized light measurements of bi-layered elastic and scattering polyacrylamide phantoms.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: September 11, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 11, 2012
Published: November 14, 2012

Citation
Sanaz Alali, Yuting Wang, and I. Alex Vitkin, "Detecting axial heterogeneity of birefringence in layered turbid media using polarized light imaging," Biomed. Opt. Express 3, 3250-3263 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010). [CrossRef] [PubMed]
  2. M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010). [CrossRef]
  3. S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012). [CrossRef]
  4. M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009). [CrossRef] [PubMed]
  5. T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006). [PubMed]
  6. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006). [CrossRef] [PubMed]
  7. N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008). [CrossRef] [PubMed]
  8. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009). [CrossRef] [PubMed]
  9. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009). [CrossRef] [PubMed]
  10. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010). [CrossRef]
  11. T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008). [CrossRef] [PubMed]
  12. K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003). [CrossRef] [PubMed]
  13. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  14. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002). [CrossRef] [PubMed]
  15. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17(5), 4151–4165 (2009). [CrossRef] [PubMed]
  16. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics3(3), 205–271 (2011). [CrossRef]
  17. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012). [CrossRef] [PubMed]
  18. X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008). [CrossRef]
  19. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996). [CrossRef]
  20. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, New York, 2003).
  21. R. A. Chipman, Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1994)
  22. H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York (1981)
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
  24. M. J. Raković, G. W. Kattawar, M. B. Mehruűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt.38(15), 3399–3408 (1999). [CrossRef] [PubMed]
  25. A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012). [CrossRef]
  26. C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).
  27. X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010). [CrossRef]
  28. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007). [CrossRef] [PubMed]
  29. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009). [CrossRef]
  30. D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express13(1), 148–163 (2005). [CrossRef] [PubMed]
  31. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002). [CrossRef] [PubMed]
  32. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  33. D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004). [CrossRef] [PubMed]
  34. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002). [CrossRef] [PubMed]
  35. A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992). [CrossRef] [PubMed]
  36. S. Prahl, “Mie Scattering Calculator,” http://omlc.ogi.edu/calc/mie_calc.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited