OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 12 — Dec. 1, 2012
  • pp: 3304–3313

Enzyme activity assays within microstructured optical fibers enabled by automated alignment

Stephen C. Warren-Smith, Guiying Nie, Erik P. Schartner, Lois A. Salamonsen, and Tanya M. Monro  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 12, pp. 3304-3313 (2012)
http://dx.doi.org/10.1364/BOE.3.003304


View Full Text Article

Enhanced HTML    Acrobat PDF (2783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: October 9, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: November 9, 2012
Published: November 20, 2012

Citation
Stephen C. Warren-Smith, Guiying Nie, Erik P. Schartner, Lois A. Salamonsen, and Tanya M. Monro, "Enzyme activity assays within microstructured optical fibers enabled by automated alignment," Biomed. Opt. Express 3, 3304-3313 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-12-3304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006). [CrossRef] [PubMed]
  2. T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010). [CrossRef]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007). [CrossRef] [PubMed]
  4. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  5. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett.29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  6. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006). [CrossRef] [PubMed]
  7. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  8. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett.28(14), 1224–1226 (2003). [CrossRef] [PubMed]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007). [CrossRef]
  10. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008). [CrossRef]
  11. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008). [CrossRef]
  12. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009). [CrossRef] [PubMed]
  13. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express18(9), 9088–9097 (2010). [CrossRef] [PubMed]
  14. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007). [CrossRef] [PubMed]
  15. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15(26), 17891–17901 (2007). [CrossRef] [PubMed]
  16. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express18(9), 9474–9485 (2010). [CrossRef] [PubMed]
  17. M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010). [CrossRef] [PubMed]
  18. Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010). [CrossRef] [PubMed]
  19. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008). [CrossRef] [PubMed]
  20. M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express19(11), 10471–10484 (2011). [CrossRef] [PubMed]
  21. S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34(22), 3577–3579 (2009). [CrossRef] [PubMed]
  22. Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008). [CrossRef] [PubMed]
  23. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007). [CrossRef]
  24. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett.32(2), 115–117 (2007). [CrossRef] [PubMed]
  25. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011). [CrossRef]
  26. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011). [CrossRef]
  27. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express19(18), 17585–17590 (2011). [CrossRef] [PubMed]
  28. T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002). [PubMed]
  29. R. F. Casper, “It’s time to pay attention to the endometrium,” Fertil. Steril.96(3), 519–521 (2011). [CrossRef] [PubMed]
  30. B. A. Lessey, “Assessment of endometrial receptivity,” Fertil. Steril.96(3), 522–529 (2011). [CrossRef] [PubMed]
  31. S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011). [CrossRef] [PubMed]
  32. N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012). [CrossRef] [PubMed]
  33. F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011). [CrossRef] [PubMed]
  34. C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Opt. Express20(10), 11232–11240 (2012). [CrossRef] [PubMed]
  35. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited