OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 240–258

Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye

Maciej Nowakowski, Matthew Sheehan, Daniel Neal, and Alexander V. Goncharov  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 2, pp. 240-258 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional optical systems usually provide best image quality on axis, while showing unavoidable gradual decrease in image quality towards the periphery of the field. The optical system of the human eye is not an exception. Within a limiting boundary the image quality can be considered invariant with field angle, and this region is known as the isoplanatic patch. We investigate the isoplanatic patch of eight healthy eyes and measure the wavefront aberration along the pupillary axis compared to the line of sight. The results are used to discuss methods of ocular aberration correction in wide-field retinal imaging with particular application to multi-conjugate adaptive optics systems.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Ophthalmology Applications

Original Manuscript: August 25, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 12, 2011
Published: January 3, 2012

Maciej Nowakowski, Matthew Sheehan, Daniel Neal, and Alexander V. Goncharov, "Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye," Biomed. Opt. Express 3, 240-258 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995). [CrossRef] [PubMed]
  2. T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19, 657–669 (2002). [CrossRef]
  3. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 30–37. [CrossRef]
  4. A. Bradley and L. N. Thibos, “OSA 95: How to measure optical properties of the eye,” presented at OSA 1995 Annual Meeting, Portland, OR, Sept. 10–15, 1995, http://www.opt.indiana.edu/people/faculty/thibos/ablntosa95/slide01.html .
  5. M. Di Jorio, “The general theory of isoplanatism for finite aperture and field,” J. Opt. Soc. Am. A39, 305–319 (1949). [CrossRef]
  6. ANSI, “Methods for reporting optical aberrations of the eye,” in American National Standard for Ophthalmics, ANSI Z80.28 (2004).
  7. International standard, “Reporting aberrations of the human eye” in Ophthalmic Optics and Instruments, ISO24157 (2008).
  8. H. J. Wyatt, “The form of the human pupil,” Vision Res.35, 2021–2036 (1995). [CrossRef] [PubMed]
  9. Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).
  10. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A12, 2348–2357 (1995). [CrossRef]
  11. M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992). [CrossRef] [PubMed]
  12. R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23, 219–232 (2006). [CrossRef]
  13. L. R. Loper, “The relationship between angle lambda and the residual astigmatism of the eye,” Am. J. Optom. & Arch. Am. Acad. Optom36, 365–377 (1959).
  14. G. K. Von Nooden, Burian-Von Noordon’s binocular vision and ocular motility (C.V. Mosby, St. Louis, 1980). [PubMed]
  15. A. Bradley and L. N. Thibos, “Modeling off-axis vision—I: the optical effects of decentering visual targets or the eye’s entrance pupil,” in Vision Models for Target Detection and Resolution, E. Peli, ed. (World Scientific Press, 1995), pp. 313–337.
  16. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001). [CrossRef] [PubMed]
  17. H. C. Howland, “The history and methods of ophthalmic wavefront sensing,” J. Refract. Surg.16, 552–553 (2000).
  18. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A11, 1949–1957 (1994). [CrossRef]
  19. F. Roddier,“Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt.27, 1223–1225 (1988). [CrossRef] [PubMed]
  20. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt.43, 289–293 (1996). [CrossRef]
  21. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002). [PubMed]
  22. R. Navarro and L. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye” Optom. Vis. Sci.74, 540–547 (1997). [CrossRef] [PubMed]
  23. V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997). [CrossRef]
  24. R. Navarro and E. Moreno-Barriusso, “Laser ray-tracing method for optical testing,” Opt. Lett.24, 951–953 (1998). [CrossRef]
  25. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt.31, 3678–3686 (1992). [CrossRef] [PubMed]
  26. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A15, 2449–2456 (1998). [CrossRef]
  27. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000). [PubMed]
  28. P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001). [CrossRef] [PubMed]
  29. M. Tscherning, “Die monochromatischen Aberrationen des menschlichen Auges,” Z. Psychol. Physiol. Sinne6, 456–471 (1894).
  30. S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000). [PubMed]
  31. W. J. Smith, The Foucault Test in Modern Optical Engineering, (McGraw- Hill, San Francisco, 2000), pp. 557, 588–592.
  32. R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995). [CrossRef]
  33. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008). [CrossRef]
  34. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, 30–61 (2010). [CrossRef]
  35. A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007). [CrossRef] [PubMed]
  36. R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).
  37. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).
  38. J. Schwiegerling and D. R. Neal, “Historical development of the Shack- Hartmann wavefront sensor,” in Legends in Applied Optics, R. Shannon, R. Shack, J. E. Harvey, and R. B. Hooker eds.(SPIE, Bellingham WA), pp. 132–139 (2005).
  39. S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci.74, 945–962 (1997). [CrossRef] [PubMed]
  40. S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis Sci.74, 931–944 (1997). [CrossRef] [PubMed]
  41. D. A. Atchison, “The skew ray issue in ocular aberration measurement,” Optom. Vis Sci.83, 396–398 (2006). [CrossRef] [PubMed]
  42. M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).
  43. P. R. Yoder, “Topography measuring apparatus,” U.S. Patent 4,902,123 (20 Feb. 1990).
  44. Y. Mejia-Barbosa and D. Malacara-Hernández, “Object surface for applying a modified Hartmann test to measure corneal topography,” Appl. Opt.40, 5778–5786 (2001). [CrossRef]
  45. J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009). [CrossRef] [PubMed]
  46. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18, 1793–1803 (2001). [CrossRef]
  47. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14, 2884–2892 (1997). [CrossRef]
  48. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A72, 52–61 (1982). [CrossRef]
  49. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse raytracing,” Opt. Express16, 1692–1703 (2008). [CrossRef] [PubMed]
  50. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).
  51. A. V. Dubinin, T. Yu. Cherezova, A. I. Belyakov, and A. V. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol.75, 172–174 (2008). [CrossRef]
  52. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008). [CrossRef] [PubMed]
  53. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24, 2157–2174 (2007). [CrossRef]
  54. M. T. Sheehan, A. V. Goncharov, V. M. O’Dwyer, V. Toal, and C. Dainty, “Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express15, 7367–7380 (2007). [CrossRef] [PubMed]
  55. E. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” http://cfao.ucolick.org/EO/internships/mainland/posters/erika.pdf .
  56. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).
  57. J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” Invest Ophthalmol. Visual Sci., ARVO E-Abstract 1195/B60 (2006).
  58. S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A20, 1–10 (2003). [CrossRef]
  59. W. N. Charman, “Aberrations and myopia,” Ophthal. Physiol. Opt.25, 285–301 (2005). [CrossRef]
  60. A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).
  61. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express17, 4454–4467 (2009). [CrossRef] [PubMed]
  62. P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27, A37–A47 (2010). [CrossRef]
  63. L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).
  64. R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).
  65. K. Y. Li and G. Yoon, “Changes in aberrations and retinal image quality due to tear film dynamics,” Opt. Express14, 12552–12559 (2006). [CrossRef] [PubMed]
  66. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort,” Opt. Express18, 2668–2681 (2010). [CrossRef] [PubMed]
  67. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002). [CrossRef]
  68. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited