OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 259–272

Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

Lixin Dong, Mahesh Kudrimoti, Ran Cheng, Yu Shang, Ellis L. Johnson, Scott D. Stevens, Brent J. Shelton, and Guoqiang Yu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 2, pp. 259-272 (2012)
http://dx.doi.org/10.1364/BOE.3.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (1651 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Optics in Cancer Research

History
Original Manuscript: October 28, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: January 1, 2012
Published: January 4, 2012

Virtual Issues
January 20, 2012 Spotlight on Optics

Citation
Lixin Dong, Mahesh Kudrimoti, Ran Cheng, Yu Shang, Ellis L. Johnson, Scott D. Stevens, Brent J. Shelton, and Guoqiang Yu, "Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery," Biomed. Opt. Express 3, 259-272 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-2-259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. I. Haddad, Multidisciplinary Management of Head and Neck Cancer (Demos Medical, New York, 2011).
  2. NCI, “Head and Neck Cancer: Questions and Answers” (National Cancer Institute, 2005), retrieved Oct. 24 2011, http://www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck .
  3. B. Kwabi-Addo and T. L. Lindstrom, Cancer Causes and Controversies: Understanding Risk Reduction and Prevention (Praeger, Santa Barbara, Calif., 2011).
  4. J. Bernier and S. M. Bentzen, “Radiotherapy for head and neck cancer: latest developments and future perspectives,” Curr. Opin. Oncol.18(3), 240–246 (2006). [CrossRef] [PubMed]
  5. R. E. Lenhard, R. T. Osteen, T. S. Gansler, and American Cancer Society, Clinical Oncology, 1st ed. (American Cancer Society, Atlanta, Ga., 2001).
  6. E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist, 6th ed. (Lippincott Williams & Wilkins, Philadelphia, 2006).
  7. V. T. DeVita, T. S. Lawrence, and S. A. Rosenberg, DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology, 9th ed. (Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2011).
  8. R. A. Gatenby, H. B. Kessler, J. S. Rosenblum, L. R. Coia, P. J. Moldofsky, W. H. Hartz, and G. J. Broder, “Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys.14(5), 831–838 (1988). [CrossRef] [PubMed]
  9. M. Nordsmark, M. Overgaard, and J. Overgaard, “Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck,” Radiother. Oncol.41(1), 31–39 (1996). [CrossRef] [PubMed]
  10. D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L. Scher, and M. W. Dewhirst, “Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck,” Int. J. Radiat. Oncol. Biol. Phys.38(2), 285–289 (1997). [CrossRef] [PubMed]
  11. H. Lyng, G. Tanum, J. F. Evensen, E. K. Rofstad, H. Lyng, G. Tanum, and J. F. Ev, “Changes in oxygen tension during radiotherapy of head and neck tumours,” Acta Oncol.38(8), 1037–1042 (1999). [CrossRef] [PubMed]
  12. H. Lyng, K. Sundfør, and E. K. Rofstad, “Changes in tumor oxygen tension during radiotherapy of uterine cervical cancer: relationships to changes in vascular density, cell density, and frequency of mitosis and apoptosis,” Int. J. Radiat. Oncol. Biol. Phys.46(4), 935–946 (2000). [CrossRef] [PubMed]
  13. N. A. Mayr, W. T. Yuh, V. A. Magnotta, J. C. Ehrhardt, J. A. Wheeler, J. I. Sorosky, C. S. Davis, B. C. Wen, D. D. Martin, R. E. Pelsang, R. E. Buller, L. W. Oberley, D. E. Mellenberg, and D. H. Hussey, “Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay,” Int. J. Radiat. Oncol. Biol. Phys.36(3), 623–633 (1996). [CrossRef] [PubMed]
  14. D. M. Brizel, R. K. Dodge, R. W. Clough, and M. W. Dewhirst, “Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome,” Radiother. Oncol.53(2), 113–117 (1999). [CrossRef] [PubMed]
  15. R. Hermans, P. Lambin, A. Van der Goten, W. Van den Bogaert, B. Verbist, C. Weltens, and P. R. Delaere, “Tumoural perfusion as measured by dynamic computed tomography in head and neck carcinoma,” Radiother. Oncol.53(2), 105–111 (1999). [CrossRef] [PubMed]
  16. A. F. DeVries, C. Kremser, P. A. Hein, J. Griebel, A. Krezcy, D. Ofner, K. P. Pfeiffer, P. Lukas, and W. Judmaier, “Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma,” Int. J. Radiat. Oncol. Biol. Phys.56(4), 958–965 (2003). [CrossRef] [PubMed]
  17. R. Hermans, M. Meijerink, W. Van den Bogaert, A. Rijnders, C. Weltens, and P. Lambin, “Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys.57(5), 1351–1356 (2003). [CrossRef] [PubMed]
  18. M. J. Mäntylä, J. T. Toivanen, M. A. Pitkänen, and A. H. Rekonen, “Radiation-induced changes in regional blood flow in human tumors,” Int. J. Radiat. Oncol. Biol. Phys.8(10), 1711–1717 (1982). [CrossRef] [PubMed]
  19. K. Lehtiö, O. Eskola, T. Viljanen, V. Oikonen, T. Grönroos, L. Sillanmäki, R. Grénman, and H. Minn, “Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer,” Int. J. Radiat. Oncol. Biol. Phys.59(4), 971–982 (2004). [CrossRef] [PubMed]
  20. S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, “Measuring tumor blood flow with H(2)(15)O: practical considerations,” Nucl. Med. Biol.27(7), 671–676 (2000). [CrossRef] [PubMed]
  21. A. Ishii, Y. Korogi, R. Nishimura, K. Kawanaka, M. Yamura, I. Ikushima, T. Hirai, Y. Yamashita, and M. Shinohara, “Intraarterial infusion chemotherapy for head and neck cancers: evaluation of tumor perfusion with intraarterial CT during carotid arteriography,” Radiat. Med.22(4), 254–259 (2004). [PubMed]
  22. W. C. Yang, V. Shah, M. Nussbaum, and J. G. Sarlin, “Desmoid tumor of the neck: CT and angiographic findings,” AJNR Am. J. Neuroradiol.5(4), 478–480 (1984). [PubMed]
  23. M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys.53(5), 1185–1191 (2002). [CrossRef] [PubMed]
  24. R. S. Sawaqed, F. J. Podbielski, H. E. Rodriguez, I. M. Wiesman, M. M. Connolly, and E. T. Clark, “Prospective comparison of intraoperative angiography with duplex scanning in evaluating lower-extremity bypass grafts in a community hospital,” Am. Surg.67(6), 601–604 (2001). [PubMed]
  25. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005). [CrossRef] [PubMed]
  26. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett.30(21), 2915–2917 (2005). [CrossRef] [PubMed]
  27. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt.11(6), 064021 (2006). [CrossRef] [PubMed]
  28. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007). [CrossRef] [PubMed]
  29. H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol.386, 349–378 (2004). [CrossRef] [PubMed]
  30. Y. Gu, W. R. Chen, M. Xia, S. W. Jeong, and H. Liu, “Effect of photothermal therapy on breast tumor vascular contents: noninvasive monitoring by near-infrared spectroscopy,” Photochem. Photobiol.81(4), 1002–1009 (2005). [CrossRef] [PubMed]
  31. J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping,” J. Biomed. Opt.8(1), 53–62 (2003). [CrossRef] [PubMed]
  32. T. H. Pham, R. Hornung, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Monitoring tumor response during photodynamic therapy using near-infrared photon-migration spectroscopy,” Photochem. Photobiol.73(6), 669–677 (2001). [CrossRef] [PubMed]
  33. R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose or carmustine treatment,” J. Neurooncol.22(3), 209–220 (1994). [CrossRef] [PubMed]
  34. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt.37(10), 1982–1989 (1998). [CrossRef] [PubMed]
  35. Q. Zhu, S. Tannenbaum, and S. H. Kurtzman, “Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring,” Surg. Oncol. Clin. N. Am.16(2), 307–321 (2007). [CrossRef] [PubMed]
  36. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011). [CrossRef] [PubMed]
  37. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  38. H. Jiang, S. Ramesh, and M. Bartlett, “Combined optical and fluorescence imaging for breast cancer detection and diagnosis,” Crit. Rev. Biomed. Eng.28(3 - 4), 371–375 (2000). [PubMed]
  39. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14(2), 024020 (2009). [CrossRef] [PubMed]
  40. Y. Shang, Y. Zhao, R. Cheng, L. Dong, D. Irwin, and G. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett.34(22), 3556–3558 (2009). [CrossRef] [PubMed]
  41. G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.16(2), 027004 (2011). [CrossRef] [PubMed]
  42. Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol.56(10), 3015–3032 (2011). [CrossRef] [PubMed]
  43. Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Opt. Express19(21), 20301–20315 (2011). [CrossRef] [PubMed]
  44. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  45. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14(1), 192–215 (1997). [CrossRef]
  46. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 1996).
  47. S. O. Rice, “Mathematical analysis of random noise,” in Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954), p. 133.
  48. C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2007).
  49. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  50. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995). [CrossRef] [PubMed]
  51. J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag.24(2), 118–121 (2005). [CrossRef] [PubMed]
  52. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46(8), 2053–2065 (2001). [CrossRef] [PubMed]
  53. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express2(7), 1969–1985 (2011). [CrossRef] [PubMed]
  54. Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express1(2), 500–511 (2010). [CrossRef] [PubMed]
  55. NCI, Response Evaluation Criteria in Solid Tumors (RECIST) Quick Reference (NIH NCI, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited