OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 273–281

Mitochondrial redox studies of oxidative stress in kidneys from diabetic mice

Sepideh Maleki, Reyhaneh Sepehr, Kevin Staniszewski, Nader Sheibani, Christine M. Sorenson, and Mahsa Ranji  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 2, pp. 273-281 (2012)
http://dx.doi.org/10.1364/BOE.3.000273


View Full Text Article

Enhanced HTML    Acrobat PDF (2235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chronic hyperglycemia during diabetes leads to increased production of reactive oxygen species (ROS) and increased oxidative stress (OS). Here we investigated whether changes in the metabolic state can be used as a marker of OS progression in kidneys. We examined redox states of kidneys from diabetic mice, Akita/+ and Akita/+;TSP1–/– mice (Akita mice lacking thrombospondin-1, TSP1) with increasing duration of diabetes. OS as measured by mitochondrial redox ratio (NADH/FAD) was detectable shortly after the onset of diabetes and further increased with the duration of diabetes. Thus, cryo fluorescence redox imaging was used as a quantitative marker of OS progression in kidneys from diabetic mice and demonstrated that alterations in the oxidative state of kidneys occur during the early stages of diabetes.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(100.2960) Image processing : Image analysis
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(260.2510) Physical optics : Fluorescence

ToC Category:
Functional Imaging

History
Original Manuscript: November 23, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 1, 2012
Published: January 10, 2012

Citation
Sepideh Maleki, Reyhaneh Sepehr, Kevin Staniszewski, Nader Sheibani, Christine M. Sorenson, and Mahsa Ranji, "Mitochondrial redox studies of oxidative stress in kidneys from diabetic mice," Biomed. Opt. Express 3, 273-281 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-2-273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Sheibani, E. A. Scheef, T. A. Dimaio, Y. Wang, S. Kondo, and C. M. Sorenson, “Bcl-2 expression modulates cell adhesion and migration promoting branching of ureteric bud cells,” J. Cell. Physiol.210(3), 616–625 (2007). [CrossRef] [PubMed]
  2. J. S. Johansen, A. K. Harris, D. J. Rychly, and A. Ergul, “Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice,” Cardiovasc. Diabetol.4(1), 5–9999 (2005). [CrossRef] [PubMed]
  3. L. Piconi, L. Quagliaro, and A. Ceriello, “Oxidative stress in diabetes,” Clin. Chem. Lab. Med.41(9), 1144–1149 (2003). [CrossRef] [PubMed]
  4. M. D. Breyer, E. Böttinger, F. C. Brosius, T. M. Coffman, R. C. Harris, C. W. Heilig, K. Sharma, and AMDCC, “Mouse models of diabetic nephropathy,” J. Am. Soc. Nephrol.16(1), 27–45 (2005). [CrossRef] [PubMed]
  5. A. Ceriello, S. Kumar, L. Piconi, K. Esposito, and D. Giugliano, “Simultaneous control of hyperglycemia and oxidative stress normalizes endothelial function in type 1 diabetes,” Diabetes Care30(3), 649–654 (2007). [CrossRef] [PubMed]
  6. Y. Ueno, F. Horio, K. Uchida, M. Naito, H. Nomura, Y. Kato, T. Tsuda, S. Toyokuni, and T. Osawa, “Increase in oxidative stress in kidneys of diabetic Akita mice,” Biosci. Biotechnol. Biochem.66(4), 869–872 (2002). [CrossRef] [PubMed]
  7. M. M. Delmastro and J. D. Piganelli, “Oxidative stress and redox modulation potential in type 1 diabetes,” Clin. Dev. Immunol.2011, 593863 (2011). [CrossRef] [PubMed]
  8. W. I. Sivitz and M. A. Yorek, “Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities,” Antioxid. Redox Signal.12(4), 537–577 (2010). [CrossRef] [PubMed]
  9. I. Giardino, D. Edelstein, and M. Brownlee, “Bcl-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells,” J. Clin. Invest.97(6), 1422–1428 (1996). [CrossRef] [PubMed]
  10. S. S. Chung, E. C. Ho, K. S. Lam, and S. K. Chung, “Contribution of polyol pathway to diabetes-induced oxidative stress,” J. Am. Soc. Nephrol.14(Suppl 3), S233–S236 (2003). [CrossRef] [PubMed]
  11. G. L. King and M. R. Loeken, “Hyperglycemia-induced oxidative stress in diabetic complications,” Histochem. Cell Biol.122(4), 333–338 (2004). [CrossRef] [PubMed]
  12. H. Bugger, S. Boudina, X. X. Hu, J. Tuinei, V. G. Zaha, H. A. Theobald, U. J. Yun, A. P. McQueen, B. Wayment, S. E. Litwin, and E. D. Abel, “Type 1 diabetic Akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3,” Diabetes57(11), 2924–2932 (2008). [CrossRef] [PubMed]
  13. B. Chance and G. R. Williams, “A method for the localization of sites for oxidative phosphorylation,” Nature176(4475), 250–254 (1955). [CrossRef] [PubMed]
  14. A. Mayevsky, “Brain NADH redox state monitored in vivo by fiber optic surface fluorometry,” Brain Res.319(1), 49–68 (1984). [PubMed]
  15. N. Ramanujam, R. Richards-Kortum, S. Thomsen, A. Mahadevan-Jansen, M. Follen, and B. Chance, “Low temperature fluorescence imaging of freeze-trapped human cervical tissues,” Opt. Express8(6), 335–343 (2001). [CrossRef] [PubMed]
  16. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [PubMed]
  17. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996). [CrossRef] [PubMed]
  18. M. Ranji, S. Kanemoto, M. Matsubara, M. A. Grosso, J. H. Gorman, R. C. Gorman, D. L. Jaggard, and B. Chance, “Fluorescence spectroscopy and imaging of myocardial apoptosis,” J. Biomed. Opt.11(6), 064036 (2006). [CrossRef] [PubMed]
  19. M. Ranji, M. Matsubara, B. G. Leshnower, R. H. Hinmon, D. L. Jaggard, B. Chance, R. C. Gorman, and J. H. Gorman, “Quantifying acute myocardial injury using ratiometric fluorometry,” IEEE Trans. Biomed. Eng.56(5), 1556–1563 (2009). [CrossRef] [PubMed]
  20. C. H. Barlow, D. A. Rorvik, and J. J. Kelly, “Imaging epicardial oxygen,” Ann. Biomed. Eng.26(1), 76–85 (1998). [CrossRef] [PubMed]
  21. S. L. Bernard, J. R. Ewen, C. H. Barlow, J. J. Kelly, S. McKinney, D. A. Frazer, and R. W. Glenny, “High spatial resolution measurements of organ blood flow in small laboratory animals,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2043–H2052 (2000). [PubMed]
  22. C. M. Sorenson, B. J. Padanilam, and M. R. Hammerman, “Abnormal postpartum renal development and cystogenesis in the bcl-2 (-/-) mouse,” Am. J. Physiol.271(1 Pt 2), F184–F193 (1996). [PubMed]
  23. Q. Huang, S. J. Wang, C. M. Sorenson, and N. Sheibani, “PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperoxia-mediated vessel obliteration,” Exp. Eye Res.87(3), 226–241 (2008). [CrossRef] [PubMed]
  24. E. A. Scheef, Q. Huang, S. Wang, C. M. Sorenson, and N. Sheibani, “Isolation and characterization of corneal endothelial cells from wild type and thrombospondin-1 deficient mice,” Mol. Vis.13, 1483–1495 (2007). [PubMed]
  25. E. A. Scheef, C. M. Sorenson, and N. Sheibani, “Attenuation of proliferation and migration of retinal pericytes in the absence of thrombospondin-1,” Am. J. Physiol. Cell Physiol.296(4), C724–C734 (2009). [CrossRef] [PubMed]
  26. J. J. Kelly, J. R. Ewen, S. L. Bernard, R. W. Glenny, and C. H. Barlow, “Regional blood flow measurements from fluorescent microsphere images using an Imaging CryoMicrotome,” Rev. Sci. Instrum.71(1), 228–234 (2000). [CrossRef]
  27. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem.254(11), 4764–4771 (1979). [PubMed]
  28. A. K. Zimmermann, F. A. Loucks, E. K. Schroeder, R. J. Bouchard, K. L. Tyler, and D. A. Linseman, “Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria,” J. Biol. Chem.282(40), 29296–29304 (2007). [CrossRef] [PubMed]
  29. N. Susnow, L. Zeng, D. Margineantu, and D. M. Hockenbery, “Bcl-2 family proteins as regulators of oxidative stress,” Semin. Cancer Biol.19(1), 42–49 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited