OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 282–294

Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800–1700 nm wavelength region

Shutaro Ishida and Norihiko Nishizawa  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 2, pp. 282-294 (2012)
http://dx.doi.org/10.1364/BOE.3.000282


View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the wavelength dependence of imaging depth and clearness of structure in ultrahigh-resolution optical coherence tomography over a wide wavelength range. We quantitatively compared the optical properties of samples using supercontinuum sources at five wavelengths, 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm, with the same system architecture. For samples of industrially used homogeneous materials with low water absorption, the attenuation coefficients of the samples were fitted using Rayleigh scattering theory. We confirmed that the systems with the longer-wavelength sources had lower scattering coefficients and less dependence on the sample materials. For a biomedical sample, we observed wavelength dependence of the attenuation coefficient, which can be explained by absorption by water and hemoglobin.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: November 1, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 6, 2012
Published: January 11, 2012

Citation
Shutaro Ishida and Norihiko Nishizawa, "Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800–1700 nm wavelength region," Biomed. Opt. Express 3, 282-294 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-2-282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999). [CrossRef]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  4. R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006). [CrossRef] [PubMed]
  5. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  6. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Informa Healthcare, New York, 2001).
  7. B. E. Bouma and G. J. Tearney, “Clinical imaging with optical coherence tomography,” Acad. Radiol.9(8), 942–953 (2002). [CrossRef] [PubMed]
  8. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999). [PubMed]
  9. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation107(1), 113–119 (2003). [CrossRef] [PubMed]
  10. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat.84(2), 85–97 (2004). [CrossRef] [PubMed]
  11. A. F. Zuluaga, M. Follen, I. Boiko, A. Malpica, and R. Richards-Kortum, “Optical coherence tomography: a pilot study of a new imaging technique for noninvasive examination of cervical tissue,” Am. J. Obstet. Gynecol.193(1), 83–88 (2005). [CrossRef] [PubMed]
  12. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998). [CrossRef] [PubMed]
  13. L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000). [CrossRef] [PubMed]
  14. A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006). [CrossRef]
  15. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  16. Y. Pan and D. L. Farkas, “Nonivasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998). [CrossRef]
  17. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001). [PubMed]
  18. A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006). [CrossRef] [PubMed]
  19. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008). [CrossRef] [PubMed]
  20. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010). [CrossRef] [PubMed]
  21. M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using Gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010). [CrossRef]
  22. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express11(24), 3290–3297 (2003). [CrossRef] [PubMed]
  23. S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low water absorption samples,” Appl. Phys. Express4(5), 052501 (2011). [CrossRef]
  24. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004). [CrossRef] [PubMed]
  25. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  26. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  27. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  28. S. Prahl, “Optical absorption of hemoglobin” (Oregon Medical Laser Center, Portland, Oreg., September 22, 2010), http://omlc.ogi.edu/spectra/hemoglobin/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3224 KB)     
» Media 2: MOV (3741 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited