OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 296–312

Correlating light scattering with internal cellular structures

Oana C. Marina, Claire K. Sanders, and Judith R. Mourant  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 2, pp. 296-312 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1633 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The origins of side scattering from a fibroblast and cervical cell line were determined by comparing side-scatter images with images stained for lysosomes, nuclei, and mitochondria on a cell by cell basis. Lysosomes or nuclei are the most efficient type of scatterer depending on the cell type and incident light polarization. The relative scattering efficiencies of lysosomes and mitochondria were the same for both cell lines, while the scattering efficiencies of the nuclei differed. The percent of 90° scattering from the nucleus, mitochondria, and lysosomes as well as the group of other internal cellular objects was estimated. The nucleus was the largest contributor to side scatter in the cervical carcinoma cells. The contributions of lysosomes, mitochondria, the nucleus, and particles unstained by either Hoechst, LysoSensor or MitoTracker ranges from ∼20% to ∼30% in fibroblast cells. The contribution of lysosomes to side scatter was much stronger when the incident light was polarized perpendicular to the scattering plane than when the polarization of the side scatter laser was parallel to the scattering plane. This dependence on side scatter polarization indicates that lysosomes contain scattering structures that are much smaller than the wavelength of light used in the measurements (785 nm). In conclusion, mitochondria were not found to be either the most efficient scatterer or to have the largest contribution to scattering in either cell line, in contrast to previous reports. Rather lysosomes, nuclei and unknown particles all have significant contributions to 90° scattering and the contributions of some of these particles can be modulated by changing the polarization of the incident light.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.0290) Scattering : Scattering

ToC Category:
Cell Studies

Original Manuscript: October 7, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 30, 2011
Published: January 13, 2012

Oana C. Marina, Claire K. Sanders, and Judith R. Mourant, "Correlating light scattering with internal cellular structures," Biomed. Opt. Express 3, 296-312 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol.19, 374–377 (1975). [PubMed]
  2. L. S. Cram and A. Brunsting, “Fluorescence and light-scattering measurements on hog cholera-infected PK-15 cells,” Exp. Cell Res.78, 209–213 (1973). [CrossRef] [PubMed]
  3. J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16, 530–544 (2010). [CrossRef] [PubMed]
  4. S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt.15, 017004 (2010). [CrossRef] [PubMed]
  5. J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “Detection of cervical intraepithelial neoplasias and cancers in cervical tissue by in vivo light scattering,” J. Low Genit. Tract. Dis.13, 216–223 (2009). [CrossRef]
  6. C. R. Weber, R. A. Schwarz, E. N. Atkinson, D. D. Cox, C. MacAulay, M. Follen, and R. Richards-Kortum, “Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer,” J. Biomed. Opt.13, 064016 (2008). [CrossRef]
  7. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt.47, 825–834 (2008). [CrossRef] [PubMed]
  8. Y. Zhu, T. Fearn, G. Mackenzie, B. Clark, J. M. Dunn, I. J. Bigio, S. G. Bown, and L. B. Lovat, “Elastic scattering spectroscopy for detection of cancer risk in Barrett’s esophagus: experimental and clinical validation of error removal by orthogonal subtraction for increasing accuracy,” J. Biomed. Opt.14, 044022 (2009). [CrossRef] [PubMed]
  9. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J.67, 2501–2510 (1994). [CrossRef] [PubMed]
  10. A. Blouin, R. P. Bolender, and E. R. Weibel, “Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study,” J. Cell Biol.72, 441–455 (1977). [CrossRef] [PubMed]
  11. A. M. James, Y.-H. Wei, C.-Y. Pang, and M. P. Murphy, “Altered mitochondrial function in fibroblasts containing Melas or Merrf mitochondrial DNA mutations,” Biochem J.318, 401–407 (1996). [PubMed]
  12. R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J.Biomed.Opt.15, 040504 (2010). [CrossRef] [PubMed]
  13. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt.12, 014010 (2007). [CrossRef] [PubMed]
  14. I. Itzkan, L. Qui, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A.104, 17255–17260 (2007). [CrossRef] [PubMed]
  15. J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, and J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt.5, 131–137 (2000). [CrossRef] [PubMed]
  16. W. E. Ortyn, B. E. Hall, T. C. George, K. Frost, D. A. Basiji, D. J. Perry, C. A. Zimmerman, D. Coder, and P. J. Morrissey, “Sensitivity measurement and compensation in spectral imaging,” Cytometry A69, 852–862 (2006). [PubMed]
  17. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7, 378–387 (2002). [CrossRef] [PubMed]
  18. A. E. Frazier, C. Kiu, D. Stojanovski, N. J. Hoogenraad, and M. T. Ryan, “Mitochondrial morphology and distribution in mammalian cells,” Biol. Chem.387, 1551–1558 (2006). [CrossRef] [PubMed]
  19. J. Heuser, “Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH,” J. Cell. Biol.108, 855–864 (1989). [CrossRef] [PubMed]
  20. V. I. Korolchuk, S. Saiki, M. Lichtenberg, F. H. Siddiqi, E. A. Roberts, S. Imarisio, L. Jahreiss, S. Sarkar, M. Futter, F. M. Menzies, C. J. O’Kane, V. Deretic, and D. C. Rubinsztein, “Lysosomal positioning coordinates cellular nutrient responses,” Nature Cell Biol.13, 453–460 (2011). [CrossRef] [PubMed]
  21. T. M. Johnson and J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express4, 200–216 (1999). [CrossRef] [PubMed]
  22. G. C. Salzman, “Light scatter: detection and usage,” Curr. Protoc. Cytom.9, 1.13.1 (1999).
  23. N. Demaurex, “pH homeostasis of cellular organelle,” News Physiol. Sci.17, 1–5 (2002). [PubMed]
  24. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J.87, 1298–1306 (2004). [CrossRef] [PubMed]
  25. D. Arifler, M. G. A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt.8, 484–494 (2003). [CrossRef] [PubMed]
  26. J.D. Wilson and T.H. Foster, “Characterization of lysosomal contribution to whole-cell light scattering by organelle ablation,” J. Biomed. Opt.12, 030503 (2007). [CrossRef] [PubMed]
  27. P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: a multiparameter flow cytometric and microscopic study,” Cytometry Part A62A, 97–108 (2004). [CrossRef]
  28. P. Saftig, Lysosomes (Springer-Verlag, 2005).
  29. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete model,” Appl. Opt.37, 2788–2797 (1998). [CrossRef]
  30. J. D. Wilson and T. M. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett.30, 2442–2444 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited