OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 313–326

Enhanced robustness digital holographic microscopy for demanding environment of space biology

M. Fatih Toy, Stéphane Richard, Jonas Kühn, Alfredo Franco-Obregón, Marcel Egli, and Christian Depeursinge  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 2, pp. 313-326 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optimized digital holographic microscopy system (DHM) suitable for high-resolution visualization of living cells under conditions of altered macroscopic mechanical forces such as those that arise from changes in gravitational force. Experiments were performed on both a ground-based microgravity simulation platform known as the random positioning machine (RPM) as well as during a parabolic flight campaign (PFC). Under these conditions the DHM system proved to be robust and reliable. In addition, the stability of the system during disturbances in gravitational force was further enhanced by implementing post-processing algorithms that best exploit the intrinsic advantages of DHM for hologram autofocusing and subsequent image registration. Preliminary results obtained in the form of series of phase images point towards sensible changes of cytoarchitecture under states of altered gravity.

© 2012 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: October 25, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 12, 2012
Published: January 13, 2012

M. Fatih Toy, Stéphane Richard, Jonas Kühn, Alfredo Franco-Obregón, Marcel Egli, and Christian Depeursinge, "Enhanced robustness digital holographic microscopy for demanding environment of space biology," Biomed. Opt. Express 3, 313-326 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Clément and K. Slenzka, Fundamentals of Space Biology. Research on Cells, Animals, and Plants in Space (Microcosm Press, El Segundo, CA, and Springer, New York, 2006).
  2. N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002). [CrossRef] [PubMed]
  3. V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).
  4. M. Cogoli, “The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results,” ASGSB Bull.5(2), 59–67 (1992). [PubMed]
  5. Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002). [CrossRef] [PubMed]
  6. H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006). [CrossRef] [PubMed]
  7. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000). [CrossRef] [PubMed]
  8. U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996). [CrossRef] [PubMed]
  9. M. S. Whorton, J. T. Eldridge, R. C. Ferebee, J. O. Lassiter, and J. W. Redmon, Jr., “Damping mechanisms for microgravity vibration isolation,” MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–07, NASA/TM-1998–206953 (NASA, 1998).
  10. P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007). [CrossRef]
  11. G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).
  12. K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010). [CrossRef]
  13. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999). [CrossRef]
  14. U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999). [CrossRef]
  15. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006). [CrossRef] [PubMed]
  16. F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006). [CrossRef]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999). [CrossRef] [PubMed]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006). [CrossRef] [PubMed]
  19. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003). [CrossRef] [PubMed]
  20. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30(5), 468–470 (2005). [CrossRef] [PubMed]
  21. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006). [CrossRef] [PubMed]
  22. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef] [PubMed]
  23. E. N. Leith and J. Upatniek, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am.52(10), 1123–1128 (1962). [CrossRef]
  24. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967). [CrossRef]
  25. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).
  26. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992). [CrossRef] [PubMed]
  27. K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996). [CrossRef] [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999). [CrossRef] [PubMed]
  29. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt.47(19), D71–D79 (2008). [CrossRef] [PubMed]
  30. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010). [CrossRef] [PubMed]
  31. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005). [CrossRef] [PubMed]
  32. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett.33(14), 1626–1628 (2008). [CrossRef] [PubMed]
  33. T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992). [CrossRef]
  34. A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009). [CrossRef]
  35. C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011). [CrossRef] [PubMed]
  36. V. Pletser, “Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns,” Acta Astronaut.55(10), 829–854 (2004). [CrossRef] [PubMed]
  37. C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010). [CrossRef] [PubMed]
  38. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008). [CrossRef] [PubMed]
  39. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A21(12), 2424–2430 (2004). [CrossRef] [PubMed]
  40. R. P. Brent, Algorithms for Minimization without Derivatives (Dover, New York, 2002).
  41. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003). [CrossRef]
  42. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express15(14), 8818–8831 (2007). [CrossRef] [PubMed]
  43. E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987). [CrossRef] [PubMed]
  44. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  45. B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (7646 KB)     
» Media 2: MOV (4788 KB)     
» Media 3: MOV (6292 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited