OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 340–353

Detection of single fluorescent proteins inside eukaryotic cells using two-photon fluorescence

Ximiao Hou and Wei Cheng  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 2, pp. 340-353 (2012)
http://dx.doi.org/10.1364/BOE.3.000340


View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging single fluorescent proteins in a live cell is a challenging task because of the strong cellular autofluorescence. Autofluorescence can be minimized by reducing fluorescence excitation volume. Total internal reflection fluorescence (TIRF) microscopy has been routinely used to reduce excitation volume and detect single protein molecules in or close to cell membrane. However, the limited penetration depth of evanescent field excludes imaging of single fluorescent proteins that reside deep inside a eukaryotic cell. Here we report detection of single fluorescent proteins inside eukaryotic cells by two-photon fluorescence (TPF) microscopy. TPF has an excitation volume less than 0.1 femtoliter (fL). Cell autofluorescence under TPF is low and thus enables us to detect single enhanced green fluorescent proteins (EGFP) and single monomeric teal fluorescent proteins (mTFP1.0) that reside several microns deep inside the cell. Discrete stepwise photobleaching of TPF was observed for both proteins inside the cell. Quantitative analysis of single-molecule fluorescence trajectories show that mTFP1.0 is about twofold brighter than EGFP, while its fluorescence on-time before bleaching is about 10 fold shorter. These findings demonstrate the sensitivity of TPF for imaging of eukaryotic cells at single-molecule level and will be useful for measurement of protein stoichiometry inside the cell.

© 2012 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Cell Studies

History
Original Manuscript: November 7, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: January 15, 2012
Published: January 18, 2012

Citation
Ximiao Hou and Wei Cheng, "Detection of single fluorescent proteins inside eukaryotic cells using two-photon fluorescence," Biomed. Opt. Express 3, 340-353 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-2-340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature475(7356), 308–315 (2011). [CrossRef] [PubMed]
  2. T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature419(6907), 638–641 (2002). [CrossRef] [PubMed]
  3. E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct.36(1), 349–369 (2007). [CrossRef] [PubMed]
  4. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005). [CrossRef] [PubMed]
  5. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984). [CrossRef] [PubMed]
  6. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE5(7), e11639 (2010). [CrossRef] [PubMed]
  7. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011). [CrossRef] [PubMed]
  8. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods8(12), 1047–1049 (2011). [CrossRef] [PubMed]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  10. E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A101(38), 7019–7023 (1997). [CrossRef]
  11. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng.10(1), 311–338 (2008). [CrossRef] [PubMed]
  12. P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J.99(10), L81–L83 (2010). [CrossRef] [PubMed]
  13. W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A.105(36), 13668–13673 (2008). [CrossRef] [PubMed]
  14. M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature443(7109), 355–358 (2006). [CrossRef] [PubMed]
  15. M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods4(4), 319–321 (2007). [PubMed]
  16. S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol.15(1), 106–108 (2008). [CrossRef] [PubMed]
  17. W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett.7(6), 229–231 (1961). [CrossRef]
  18. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  19. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol.17(8), 763–767 (1999). [CrossRef] [PubMed]
  20. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006). [CrossRef] [PubMed]
  21. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  22. M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol.26(1), 585–626 (2008). [CrossRef] [PubMed]
  23. P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000). [CrossRef] [PubMed]
  24. D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” in Handbook Of Biological Confocal Microscopy, J. Pawley, ed. (Springer, 1995), Chap. 3, pp. 39–52.
  25. D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol.9(2), 66–69 (1999). [CrossRef] [PubMed]
  26. X. Hou and W. Cheng, “Single-molecule detection using continuous wave excitation of two-photon fluorescence,” Opt. Lett.36(16), 3185–3187 (2011). [CrossRef] [PubMed]
  27. S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res.44(12 Pt 1), 5657–5660 (1984). [PubMed]
  28. E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol.75(6), 2993–3000 (2001). [CrossRef] [PubMed]
  29. W. Cheng, X. Hou, and F. Ye, “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping,” Opt. Lett.35(17), 2988–2990 (2010). [CrossRef] [PubMed]
  30. J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature457(7228), 446–450 (2009). [CrossRef] [PubMed]
  31. N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001). [CrossRef] [PubMed]
  32. H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science282(5395), 1877–1882 (1998). [CrossRef] [PubMed]
  33. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science283(5408), 1670–1676 (1999). [CrossRef] [PubMed]
  34. N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature435(7040), 308–312 (2005). [CrossRef] [PubMed]
  35. P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys.318(1-2), 7–11 (2005). [CrossRef]
  36. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011). [CrossRef] [PubMed]
  37. E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A103(49), 10553–10560 (1999). [CrossRef]
  38. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B113(4), 855–859 (2009). [CrossRef] [PubMed]
  39. H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J.400(3), 531–540 (2006). [CrossRef] [PubMed]
  40. S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett.23(15), 1238–1240 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited