OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 2 — Feb. 1, 2012
  • pp: 366–379

Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography

Loretta Scolaro, Robert A. McLaughlin, Blake R. Klyen, Benjamin A. Wood, Peter D. Robbins, Christobel M. Saunders, Steven L. Jacques, and David D. Sampson  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 2, pp. 366-379 (2012)
http://dx.doi.org/10.1364/BOE.3.000366


View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the use of optical coherence tomography (OCT) to determine spatially localized optical attenuation coefficients of human axillary lymph nodes and their use to generate parametric images of lymphoid tissue. 3D-OCT images were obtained from excised lymph nodes and optical attenuation coefficients were extracted assuming a single scattering model of OCT. We present the measured attenuation coefficients for several tissue regions in benign and reactive lymph nodes, as identified by histopathology. We show parametric images of the measured attenuation coefficients as well as segmented images of tissue type based on thresholding of the attenuation coefficient values. Comparison to histology demonstrates the enhancement of contrast in parametric images relative to OCT images. This enhancement is a step towards the use of OCT for in situ assessment of lymph nodes.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: November 18, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 18, 2012
Published: January 27, 2012

Citation
Loretta Scolaro, Robert A. McLaughlin, Blake R. Klyen, Benjamin A. Wood, Peter D. Robbins, Christobel M. Saunders, Steven L. Jacques, and David D. Sampson, "Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography," Biomed. Opt. Express 3, 366-379 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-2-366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cianfrocca and L. J. Goldstein, “Prognostic and predictive factors in early-stage breast cancer,” Oncologist9(6), 606–616 (2004). [CrossRef] [PubMed]
  2. U. Veronesi, G. Viale, G. Paganelli, S. Zurrida, A. Luini, V. Galimberti, P. Veronesi, M. Intra, P. Maisonneuve, F. Zucca, G. Gatti, G. Mazzarol, C. De Cicco, and D. Vezzoli, “Sentinel lymph node biopsy in breast cancer: ten-year results of a randomized controlled study,” Ann. Surg.251(4), 595–600 (2010). [CrossRef] [PubMed]
  3. J. A. Petrek, R. T. Senie, M. Peters, and P. P. Rosen, “Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis,” Cancer92(6), 1368–1377 (2001). [CrossRef] [PubMed]
  4. U. Veronesi, G. Paganelli, V. Galimberti, G. Viale, S. Zurrida, M. Bedoni, A. Costa, C. de Cicco, J. G. Geraghty, A. Luini, V. Sacchini, and P. Veronesi, “Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes,” Lancet349(9069), 1864–1867 (1997). [CrossRef] [PubMed]
  5. L. G. Wilke, L. M. McCall, K. E. Posther, P. W. Whitworth, D. S. Reintgen, A. M. Leitch, S. G. A. Gabram, A. Lucci, C. E. Cox, K. K. Hunt, J. E. Herndon, and A. E. Giuliano, “Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial,” Ann. Surg. Oncol.13(4), 491–500 (2006). [CrossRef] [PubMed]
  6. T. Kim, A. E. Giuliano, and G. H. Lyman, “Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma,” Cancer106(1), 4–16 (2006). [CrossRef] [PubMed]
  7. K. J. Rosbach, D. Shin, T. J. Muldoon, M. A. Quraishi, L. P. Middleton, K. K. Hunt, F. Meric-Bernstam, T. K. Yu, R. R. Richards-Kortum, and W. Yang, “High-resolution fiber optic microscopy with fluorescent contrast enhancement for the identification of axillary lymph node metastases in breast cancer: a pilot study,” Biomed. Opt. Express1(3), 911–922 (2010). [CrossRef] [PubMed]
  8. K. S. Johnson, D. W. Chicken, D. C. O. Pickard, A. C. Lee, G. Briggs, M. Falzon, I. J. Bigio, M. R. Keshtgar, and S. G. Bown, “Elastic scattering spectroscopy for intraoperative determination of sentinel lymph node status in the breast,” J. Biomed. Opt.9(6), 1122–1128 (2004). [CrossRef] [PubMed]
  9. M. R. S. Keshtgar, D. W. Chicken, M. R. Austwick, S. K. Somasundaram, C. A. Mosse, Y. Zhu, I. J. Bigio, and S. G. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Br. J. Surg.97(8), 1232–1239 (2010). [CrossRef] [PubMed]
  10. W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005). [PubMed]
  11. R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, “Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer,” Cancer Res.70(7), 2579–2584 (2010). [CrossRef] [PubMed]
  12. F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer,” IEEE Eng. Med. Biol. Mag.29(2), 63–70 (2010). [CrossRef] [PubMed]
  13. Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt.15(5), 050501 (2010). [CrossRef] [PubMed]
  14. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  15. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  16. D. Levitz, M. T. Hinds, N. Choudhury, N. T. Tran, S. R. Hanson, and S. L. Jacques, “Quantitative characterization of developing collagen gels using optical coherence tomography,” J. Biomed. Opt.15(2), 026019 (2010). [CrossRef] [PubMed]
  17. I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt.10(6), 064024 (2005). [CrossRef] [PubMed]
  18. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24(10), 1369–1376 (2005). [CrossRef] [PubMed]
  19. A. Knüttel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt.9(2), 265–273 (2004). [CrossRef] [PubMed]
  20. T. Q. Xie, M. L. Zeidel, and Y. T. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express10(24), 1431–1443 (2002). [PubMed]
  21. S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods154(1-2), 96–101 (2006). [CrossRef] [PubMed]
  22. K. Barwari, D. M. de Bruin, E. C. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25(2), 311–315 (2011). [CrossRef] [PubMed]
  23. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010). [CrossRef] [PubMed]
  24. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  25. C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  26. A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17(20), 17426–17440 (2009). [CrossRef] [PubMed]
  27. E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15(6), 066013 (2010). [CrossRef] [PubMed]
  28. A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5(1), 83–92 (2000). [CrossRef] [PubMed]
  29. A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 210–221 (2003). [CrossRef]
  30. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  31. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A17(3), 484–490 (2000). [CrossRef] [PubMed]
  32. J. N. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt.33(31), 7397–7405 (1994). [CrossRef] [PubMed]
  33. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003). [CrossRef]
  34. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011). [CrossRef] [PubMed]
  35. X. Y. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48(24), 4165–4172 (2003). [CrossRef] [PubMed]
  36. C. Flueraru, D. P. Popescu, Y. Mao, S. Chang, and M. G. Sowa, “Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue,” Phys. Med. Biol.55(8), 2317–2331 (2010). [CrossRef] [PubMed]
  37. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47(16), 2847–2861 (2002). [CrossRef] [PubMed]
  38. F. J. van der Meer, D. J. Faber, M. C. G. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010). [CrossRef] [PubMed]
  39. B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt.13(1), 014014 (2008). [CrossRef] [PubMed]
  40. N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005). [CrossRef]
  41. A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt.11(5), 054015 (2006). [CrossRef] [PubMed]
  42. M. Mujat, R. D. Ferguson, D. X. Hammer, C. Gittins, and N. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt.14(3), 034040 (2009). [CrossRef] [PubMed]
  43. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Topics Quantum Electron. (to be published).
  44. B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005). [CrossRef] [PubMed]
  45. P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.10(6), 064033 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited