OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 435–446

Mechanisms of nanoparticle-mediated photomechanical cell damage

Sara Peeters, Michael Kitz, Stefan Preisser, Antoinette Wetterwald, Barbara Rothen-Rutishauser, George N. Thalmann, Christina Brandenberger, Arthur Bailey, and Martin Frenz  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 435-446 (2012)
http://dx.doi.org/10.1364/BOE.3.000435


View Full Text Article

Enhanced HTML    Acrobat PDF (2394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.5180) Medical optics and biotechnology : Photodynamic therapy

ToC Category:
Cell Studies

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: January 31, 2012
Published: February 7, 2012

Citation
Sara Peeters, Michael Kitz, Stefan Preisser, Antoinette Wetterwald, Barbara Rothen-Rutishauser, George N. Thalmann, Christina Brandenberger, Arthur Bailey, and Martin Frenz, "Mechanisms of nanoparticle-mediated photomechanical cell damage," Biomed. Opt. Express 3, 435-446 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003). [CrossRef]
  2. T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008). [CrossRef] [PubMed]
  3. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008). [CrossRef] [PubMed]
  4. P.-C. Li, C.-R. C. Wang, D.-B. Shieh, C.-W. Wei, C.-K. Liao, C. Poe, S. Jhan, A. A. Ding, Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008). [CrossRef] [PubMed]
  5. S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, J. H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009). [CrossRef] [PubMed]
  6. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007). [CrossRef] [PubMed]
  7. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008). [CrossRef] [PubMed]
  8. L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010). [CrossRef] [PubMed]
  9. L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009). [CrossRef] [PubMed]
  10. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006). [CrossRef] [PubMed]
  11. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003). [CrossRef] [PubMed]
  12. V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005). [CrossRef]
  13. G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008). [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  15. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007). [CrossRef] [PubMed]
  16. S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010). [CrossRef] [PubMed]
  17. D. O. Lapotko, “Laser-induced bubbles in living cells,” Lasers Surg. Med. 38(3), 240–248 (2006). [CrossRef] [PubMed]
  18. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006). [CrossRef] [PubMed]
  19. V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005). [CrossRef] [PubMed]
  20. D. Lapotko, “Plasmonic nanobubbles as tunable cellular probes for cancer theranostics,” Cancers (Basel) 3(1), 802–840 (2011). [CrossRef] [PubMed]
  21. L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009). [CrossRef] [PubMed]
  22. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007). [CrossRef] [PubMed]
  23. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005). [CrossRef] [PubMed]
  24. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010). [CrossRef] [PubMed]
  25. D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007). [CrossRef] [PubMed]
  26. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011). [CrossRef] [PubMed]
  27. F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006). [CrossRef] [PubMed]
  28. A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002). [CrossRef] [PubMed]
  29. J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006). [CrossRef] [PubMed]
  30. Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008). [CrossRef] [PubMed]
  31. T. Gisler, H. Rüger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, J. Rička, “Mode-selective dynamic light scattering: theory versus experimental realization,” Appl. Opt. 34(18), 3546–3553 (1995). [CrossRef] [PubMed]
  32. B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006). [CrossRef] [PubMed]
  33. Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972). [PubMed]
  34. T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997). [CrossRef]
  35. C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007). [CrossRef] [PubMed]
  36. L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
  37. G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003). [CrossRef] [PubMed]
  38. J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010). [CrossRef] [PubMed]
  39. J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009). [CrossRef] [PubMed]
  40. B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006). [CrossRef]
  41. P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008). [CrossRef] [PubMed]
  42. R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010). [CrossRef] [PubMed]
  43. D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006). [CrossRef] [PubMed]
  44. S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999). [CrossRef]
  45. Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited