OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 447–454

Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots

Katherine Lugo, Xiaoyu Miao, Fred Rieke, and Lih Y. Lin  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 3, pp. 447-454 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stimulating cells by using light is a non-invasive technique that provides flexibility in probing different locations while minimizing unintended effects on the system. We propose a new way to make cells photosensitive without using genetic or chemical manipulation, which alters natural cells, in conjunction with Quantum Dots (QDs). Remote switching of cellular activity by optical QD excitation is demonstrated by integrating QDs with cells: CdTe QD films with prostate cancer (LnCap) cells, and CdSe QD films and probes with cortical neurons. Changes in membrane potential and ionic currents are recorded by using the patch-clamp method. Upon excitation, the ion channels in the cell membrane were activated, resulting in hyperpolarization or depolarization of the cell.

© 2012 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4090) Medical optics and biotechnology : Modulation techniques
(170.5380) Medical optics and biotechnology : Physiology
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Cell Studies

Original Manuscript: October 24, 2011
Revised Manuscript: December 19, 2011
Manuscript Accepted: January 18, 2012
Published: February 8, 2012

Katherine Lugo, Xiaoyu Miao, Fred Rieke, and Lih Y. Lin, "Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots," Biomed. Opt. Express 3, 447-454 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007). [CrossRef] [PubMed]
  2. M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006). [CrossRef]
  3. G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009). [CrossRef] [PubMed]
  4. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005). [CrossRef] [PubMed]
  5. F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007). [CrossRef] [PubMed]
  6. P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008). [CrossRef] [PubMed]
  7. E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993). [CrossRef] [PubMed]
  8. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006). [CrossRef] [PubMed]
  9. H. Y. Hsu, H. Lee, A. Jamshidi, J. Valley, S. N. Pei, E. Isocaff, and M. C. Wu, “Optical Control of Neural Activity with Amorphous Silicon Light Addressable Electrodes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper CTuD2.
  10. X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010). [CrossRef] [PubMed]
  11. O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007). [CrossRef] [PubMed]
  12. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004). [CrossRef] [PubMed]
  13. E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).
  14. J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005). [CrossRef]
  15. N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005). [CrossRef] [PubMed]
  16. T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007). [CrossRef] [PubMed]
  17. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, New Jersey 1999).
  18. K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011). [CrossRef] [PubMed]
  19. C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008). [CrossRef]
  20. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003). [CrossRef]
  21. N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007). [CrossRef] [PubMed]
  22. D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O. McNamara, and L. E. White, Neuroscience (Sinauer, 2008), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited