OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 455–466

Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system

Jia Qin, Roberto Reif, Zhongwei Zhi, Suzan Dziennis, and Ruikang Wang  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 455-466 (2012)
http://dx.doi.org/10.1364/BOE.3.000455


View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multi-functional imaging system capable of determining relative changes in blood flow, hemoglobin concentration, and morphological features of the blood vasculature is demonstrated. The system combines two non-invasive imaging techniques, a dual-wavelength laser speckle contrast imaging (2-LSI) and an optical microangiography (OMAG) system. 2-LSI is used to monitor the changes in the dynamic blood flow and the changes in the concentration of oxygenated (HbO), deoxygenated (Hb) and total hemoglobin (HbT). The OMAG system is used to acquire high resolution images of the functional blood vessel network. The vessel area density (VAD) is used to quantify the blood vessel network morphology, specifically the capillary recruitment. The proposed multi-functional system is employed to assess the blood perfusion status from a mouse pinna before and immediately after a burn injury. To our knowledge, this is the first non-invasive, non-contact and multifunctional imaging modality that can simultaneously measure variations of several blood perfusion parameters.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(130.3120) Integrated optics : Integrated optics devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Multimodal Imaging

History
Original Manuscript: November 10, 2011
Revised Manuscript: January 14, 2012
Manuscript Accepted: January 16, 2012
Published: February 9, 2012

Citation
Jia Qin, Roberto Reif, Zhongwei Zhi, Suzan Dziennis, and Ruikang Wang, "Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system," Biomed. Opt. Express 3, 455-466 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pascarella, G. W. Schmid Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg.19(6), 921–927 (2005). [CrossRef] [PubMed]
  2. D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation4(2), 211–232 (1997). [CrossRef] [PubMed]
  3. D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med.166(1), 98–104 (2002). [CrossRef] [PubMed]
  4. S. C. Bondy, R. A. W. Lehman, and J. L. Purdy, “Visual attention affects brain blood flow,” Nature248(5447), 440–441 (1974). [CrossRef] [PubMed]
  5. G. Bell and A. M. Harper, “Measurement of regional blood flow through skin from clearance of krypton-85,” Nature202(4933), 704–705 (1964). [CrossRef] [PubMed]
  6. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010). [CrossRef] [PubMed]
  7. M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 677–683 (1997). [CrossRef] [PubMed]
  8. V. Provitera, M. Nolano, N. Pappone, E. Lubrano, A. Stancanelli, B. Lanzillo, and L. Santoro, “Axonal degeneration in systemic sclerosis can be reverted by factors improving tissue oxygenation,” Rheumatology (Oxford)46(11), 1739–1741 (2007). [CrossRef] [PubMed]
  9. S. R. Nirmala, S. Dandapat, and P. M. Bora, “Wavelet weighted blood vessel distortion measure for retinal images,” Biomed. Signal Process. Control5(4), 282–291 (2010). [CrossRef]
  10. G. Ciuffetti, L. Pasqualini, M. Pirro, R. Lombardini, M. De Sio, G. Schillaci, and E. Mannarino, “Blood rheology in men with essential hypertension and capillary rarefaction,” J. Hum. Hypertens.16(8), 533–537 (2002). [CrossRef] [PubMed]
  11. P. M. Hutchins, V. L. Roddick, and J. W. Dusseau, “Correlation of blood-pressure and rarefaction of small arterioles in back-crossed spontaneously hypertensive rats,” Microvasc. Res.21, 246–9999 (1981).
  12. J. P. Noon, B. R. Walker, D. J. Webb, A. C. Shore, D. W. Holton, H. V. Edwards, and G. C. M. Watt, “Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure,” J. Clin. Invest.99(8), 1873–1879 (1997). [CrossRef] [PubMed]
  13. C. M. Wacker, A. W. Hartlep, M. Bock, S. Pfleger, G. Beck, G. van Kaick, L. R. Schad, and W. R. Bauer, “BOLD-MRI of the heart in patients with coronary artery disease: evidence for imaging of capillary recruitment in myocardium supplied by the stenotic artery,” Circulation98, 371–9999 (1998).
  14. F. S. Sutherland, E. Stefansson, D. L. Hatchell, and H. Reiser, “Retinal oxygen consumption in vitro. The effect of diabetes mellitus, oxygen and glucose,” Acta Ophthalmol. (Copenh.)68(6), 715–720 (1990). [CrossRef] [PubMed]
  15. W. W. Wagner, L. P. Latham, and R. L. Capen, “Capillary recruitment during airway hypoxia: role of pulmonary artery pressure,” J. Appl. Physiol.47(2), 383–387 (1979). [PubMed]
  16. P. Horstmann, “The oxygen consumption in diabetes mellitus,” Acta Med. Scand.139(4), 326–330 (1951). [CrossRef] [PubMed]
  17. E. Tibiriçá, E. Rodrigues, R. A. Cobas, and M. B. Gomes, “Endothelial function in patients with type 1 diabetes evaluated by skin capillary recruitment,” Microvasc. Res.73(2), 107–112 (2007). [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  19. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med.4(7), 861–865 (1998). [CrossRef] [PubMed]
  20. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett.32(23), 3423–3425 (2007). [CrossRef] [PubMed]
  21. R. K. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011). [CrossRef] [PubMed]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  23. J. A. Eyre, T. J. H. Essex, P. A. Flecknell, P. H. Bartholomew, and J. I. Sinclair, “A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres,” Clin. Phys. Physiol. Meas.9(1), 65–74 (1988). [CrossRef] [PubMed]
  24. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  25. C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004). [CrossRef] [PubMed]
  26. A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  27. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, C. Richardson, and E. O. R. Reynolds, “Responses of cerebral vasculature to changes in arterial carbon-dioxide tension measured by near-infrared spectroscopy in newborn-infants,” Pediatr. Res.22(2), 230–9999 (1987). [CrossRef]
  28. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  29. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003). [CrossRef] [PubMed]
  30. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  31. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  32. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage13(6), 1002–1015 (2001). [CrossRef] [PubMed]
  33. R. K. Wang, “Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol.52(23), N531–N537 (2007). [CrossRef] [PubMed]
  34. R. K. K. Wang and Z. H. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  35. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  36. A. C. Sull, L. N. Vuong, L. L. Price, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, J. S. Schuman, and J. S. Duker, “Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness,” Retina30(2), 235–245 (2010). [CrossRef] [PubMed]
  37. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  38. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011). [CrossRef] [PubMed]
  39. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, X. R. Shi, A. L. Nuttall, and R. K. K. Wang, “Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography,” IEEE Trans. Med. Imaging30(2), 224–230 (2011). [CrossRef] [PubMed]
  40. J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011). [CrossRef] [PubMed]
  41. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  42. Y. L. Jia, J. Qin, Z. W. Zhi, and R. K. K. Wang, “Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice,” J. Biomed. Opt.16(8), 086004 (2011). [CrossRef] [PubMed]
  43. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933(1), 184–192 (1988). [CrossRef] [PubMed]
  44. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  45. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  46. C. W. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab.25(8), 1078–1092 (2005). [CrossRef] [PubMed]
  47. T. Kusaka, Y. Hisamatsu, K. Kawada, K. Okubo, H. Okada, M. Namba, T. Imai, K. Isobe, and S. Itoh, “Measurement of cerebral optical pathlength as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Opt. Rev.10(5), 466–469 (2003). [CrossRef]
  48. M. E. Seaman, S. M. Peirce, and K. Kelly, “Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis,” PLoS ONE6(6), e20807 (2011). [CrossRef] [PubMed]
  49. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006). [CrossRef] [PubMed]
  50. H. Schulte, A. Sollevi, and M. Segerdahl, “The distribution of hyperaemia induced by skin burn injury is not correlated with the development of secondary punctate hyperalgesia,” J. Pain5(4), 212–217 (2004). [CrossRef] [PubMed]
  51. D. G. Crawford, H. M. Fairchild, and A. C. Guyton, “Oxygen lack as a possible cause of reactive hyperemia,” Am. J. Physiol.197, 613–616 (1959). [PubMed]
  52. J. Schrader, F. J. Haddy, and E. Gerlach, “Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia,” Pflugers Arch.369(1), 1–6 (1977). [CrossRef] [PubMed]
  53. C. Mayeur, S. Campard, C. Richard, and J. L. Teboul, “Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy,” Crit. Care Med.39(4), 695–701 (2011). [CrossRef] [PubMed]
  54. S. Trojan and J. Kapitola, “Reaktivní hyperémie mozku potkana po výskové hypoxii [Reactive hyperemia in the brain of rats after high altitude hypoxia],” Sb. Lek.92(4), 97–102 (1990). [PubMed]
  55. A. H. Mulder, A. P. J. van Dijk, P. Smits, and C. J. Tack, “Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle,” Microcirculation15(3), 203–213 (2008). [CrossRef] [PubMed]
  56. K. Parthasarathi and H. H. Lipowsky, “Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability,” Am. J. Physiol.277(6 Pt 2), H2145–H2157 (1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited