OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 473–487

Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

Carlos Dorronsoro, Daniel Pascual, Pablo Pérez-Merino, Sabine Kling, and Susana Marcos  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 473-487 (2012)
http://dx.doi.org/10.1364/BOE.3.000473


View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new technique is presented for the non-invasive imaging of the dynamic response of the cornea to an air puff inducing a deformation. A spectral OCT instrument combined with an air tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal evolution of the corneal apex. The entire deformation process can be dynamically visualized. A quantitative analysis allows direct extraction of several deformation parameters, such as amplitude, diameter and volume of the maximum deformation, as well as duration and speed of the increasing deformation period and the recovery period. The potential of the technique is demonstrated on porcine corneas in vitro under constant IOP for several conditions (untreated, after riboflavin instillation and under cross-linking with ultraviolet light), as well as on human corneas in vivo. The new technique has proved very sensitive to detect differences in the deformation parameters across conditions. We have confirmed non-invasively that Riboflavin and UV-cross-linking induce changes in the corneal biomechanical properties. Those differences appear to be the result of changes in constituent properties of the cornea, and not a consequence of changes in corneal thickness, geometry or IOP. These measurements are a first step for the estimation of the biomechanical properties of corneal tissue, at an individual level and in vivo, to improve diagnosis and prognosis of diseases and treatments involving changes in the biomechanical properties of the cornea.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: December 13, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 17, 2012
Published: February 9, 2012

Citation
Carlos Dorronsoro, Daniel Pascual, Pablo Pérez-Merino, Sabine Kling, and Susana Marcos, "Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas," Biomed. Opt. Express 3, 473-487 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980). [CrossRef] [PubMed]
  2. W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006). [CrossRef] [PubMed]
  3. Y. S. Rabinowitz, “Keratoconus,” Surv. Ophthalmol.42(4), 297–319 (1998). [CrossRef] [PubMed]
  4. E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998). [CrossRef] [PubMed]
  5. G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003). [CrossRef] [PubMed]
  6. G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003). [CrossRef] [PubMed]
  7. J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000). [CrossRef] [PubMed]
  8. J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000). [CrossRef] [PubMed]
  9. D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002). [CrossRef] [PubMed]
  10. C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000). [PubMed]
  11. P. S. Binder, “Ectasia after laser in situ keratomileusis,” J. Cataract Refract. Surg.29(12), 2419–2429 (2003). [CrossRef] [PubMed]
  12. C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006). [PubMed]
  13. M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009). [CrossRef] [PubMed]
  14. B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986). [CrossRef] [PubMed]
  15. D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992). [CrossRef] [PubMed]
  16. A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).
  17. A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008). [CrossRef] [PubMed]
  18. K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004). [CrossRef] [PubMed]
  19. H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998). [PubMed]
  20. W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008). [CrossRef] [PubMed]
  21. S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010). [CrossRef] [PubMed]
  22. A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009). [CrossRef] [PubMed]
  23. S. Kling, J. J. del Coz, P. Pérez-Merino, J. L. Suarez, and S. Marcos, “Impact of hydration state and storage media on corneal biomechanical properties from in vitro inflation tests and finite element modeling,” submitted to Invest. Ophthalmol. Vis. Sci.
  24. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005). [CrossRef] [PubMed]
  25. B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011). [PubMed]
  26. Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009). [CrossRef] [PubMed]
  27. G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005). [CrossRef] [PubMed]
  28. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011). [CrossRef] [PubMed]
  29. X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009). [CrossRef] [PubMed]
  30. R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011). [CrossRef] [PubMed]
  31. C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.
  32. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002). [CrossRef] [PubMed]
  33. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009). [CrossRef] [PubMed]
  34. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009). [CrossRef] [PubMed]
  35. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [CrossRef] [PubMed]
  36. R. F. Steinert and D Huang, eds., Anterior Segment Optical Coherence Tomography (SLACK Incorporated, Thorofare, N.J., 2008).
  37. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  38. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  39. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011). [CrossRef] [PubMed]
  40. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  41. J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011). [CrossRef] [PubMed]
  42. I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005). [CrossRef] [PubMed]
  43. M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3594 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited