OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 533–542

Optical coherence tomography for the identification of musculoskeletal structures of the spine: a pilot study

Kathy Beaudette, Mathias Strupler, Fouzi Benboujja, Stefan Parent, Carl-Eric Aubin, and Caroline Boudoux  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 533-542 (2012)
http://dx.doi.org/10.1364/BOE.3.000533


View Full Text Article

Enhanced HTML    Acrobat PDF (2951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine requiring in severe cases invasive surgery. Here, we explore the potential of optical coherence tomography (OCT) as a guiding tool for novel fusionless minimally invasive spinal surgeries on an ex vivo porcine model. We show that OCT, despite its limited penetration depth, may be used to precisely locate structures such as growth plate, bone and intervertebral disk using relative attenuation coefficients. We further demonstrate a segmentation algorithm that locates growth plates automatically on en-face OCT reconstructions.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: December 19, 2011
Revised Manuscript: February 1, 2012
Manuscript Accepted: February 4, 2012
Published: February 13, 2012

Citation
Kathy Beaudette, Mathias Strupler, Fouzi Benboujja, Stefan Parent, Carl-Eric Aubin, and Caroline Boudoux, "Optical coherence tomography for the identification of musculoskeletal structures of the spine: a pilot study," Biomed. Opt. Express 3, 533-542 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Wall, D. I. Bylski-Austrow, R. J. Kolata, and A. H. Crawford, “Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth,” Spine30(10), 1148–1153 (2005). [CrossRef] [PubMed]
  2. R. R. Betz, A. Ranade, A. F. Samdani, R. Chafetz, L. P. DʼAndrea, J. P. Gaughan, J. Asghar, H. Grewal, and M. J. Mulcahey, “Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis,” Spine35(2), 169–176 (2010). [CrossRef] [PubMed]
  3. J. T. Braun, E. Akyuz, J. W. Ogilvie, and K. N. Bachus, “The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis,” J. Bone Joint Surg. Am.87(9), 2038–2051 (2005). [CrossRef] [PubMed]
  4. M. Driscoll, C.-E. Aubin, A. Moreau, Y. Wakula, J. F. Sarwark, and S. Parent, “Spinal growth modulation using a novel intravertebral epiphyseal device in an immature porcine model,” Eur. Spine J.21(1), 138–144 (2012). [CrossRef] [PubMed]
  5. P. O. Newton, V. V. Upasani, C. L. Farnsworth, R. Oka, R. C. Chambers, J. Dwek, J. R. Kim, A. Perry, and A. T. Mahar, “Spinal growth modulation with use of a tether in an immature porcine model,” J. Bone Joint Surg. Am.90(12), 2695–2706 (2008). [CrossRef] [PubMed]
  6. E. C. Schmid, C. E. Aubin, A. Moreau, J. Sarwark, and S. Parent, “A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities,” Eur. Spine J.17(10), 1329–1335 (2008). [CrossRef] [PubMed]
  7. J. S. Price, B. O. Oyajobi, and R. G. Russell, “The cell biology of bone growth,” Eur. J. Clin. Nutr.48(Suppl 1), S131–S149 (1994). [PubMed]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  9. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  10. S. B. Adams, P. R. Herz, D. L. Stamper, M. J. Roberts, S. Bourquin, N. A. Patel, K. Schneider, S. D. Martin, S. Shortkroff, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of progressive articular cartilage degeneration,” J. Orthop. Res.24(4), 708–715 (2006). [CrossRef] [PubMed]
  11. D. M. Bear, A. Williams, C. T. Chu, C. H. Coyle, and C. R. Chu, “Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content,” J. Orthop. Res.28(4), 546–552 (2010). [PubMed]
  12. C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt.12(5), 051703 (2007). [CrossRef] [PubMed]
  13. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol.28(6), 1311–1318 (2001). [PubMed]
  14. C. W. Han, C. R. Chu, N. Adachi, A. Usas, F. H. Fu, J. Huard, and Y. Pan, “Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography,” Osteoarthritis Cartilage11(2), 111–121 (2003). [CrossRef] [PubMed]
  15. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol.26(3), 627–635 (1999). [PubMed]
  16. X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther.7(2), R318–R323 (2005). [CrossRef] [PubMed]
  17. Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt.8(4), 648–654 (2003). [CrossRef] [PubMed]
  18. J. Aerssens, S. Boonen, G. Lowet, and J. Dequeker, “Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research,” Endocrinology139(2), 663–670 (1998). [CrossRef] [PubMed]
  19. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010). [CrossRef] [PubMed]
  20. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24(10), 1369–1376 (2005). [CrossRef] [PubMed]
  21. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  22. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008). [CrossRef] [PubMed]
  23. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited