OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 552–571

Modeling boundary measurements of scattered light using the corrected diffusion approximation

Ossi Lehtikangas, Tanja Tarvainen, and Arnold D. Kim  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 552-571 (2012)
http://dx.doi.org/10.1364/BOE.3.000552


View Full Text Article

Enhanced HTML    Acrobat PDF (3196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation.

© 2012 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(030.5620) Coherence and statistical optics : Radiative transfer
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: January 5, 2012
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 9, 2012
Published: February 21, 2012

Citation
Ossi Lehtikangas, Tanja Tarvainen, and Arnold D. Kim, "Modeling boundary measurements of scattered light using the corrected diffusion approximation," Biomed. Opt. Express 3, 552-571 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, New York, 1997).
  2. L.V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).
  3. S.R. Arridge, “Optical tomography in medical imaging,” Inv. Prob.15, R41–R93 (1999). [CrossRef]
  4. S.R. Arridge and J.C. Schotland, “Optical tomography: forward and inverse problems,” Inv. Prob.25123010 (2009). [CrossRef]
  5. A.P. Gibson, J.C. Hebden, and S.R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50R1–R43 (2005). [CrossRef] [PubMed]
  6. B.T. Cox, S.R. Arridge, K.P. Köstli, and P.C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45, 1866–1875 (2006). [CrossRef] [PubMed]
  7. G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inv. Prob.27, 075003 (2011). [CrossRef]
  8. A.Q. Bauer, R.E. Nothdurft, T.N. Erpelding, L.V. Wang, and J.P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16, 096016 (2011). [CrossRef] [PubMed]
  9. R. Aronson, “Extrapolation distance for diffusion of light,” Proc. SPIE1888, 297–304 (1993). [CrossRef]
  10. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11, 2727–2741 (1994). [CrossRef]
  11. R. Aronson, “Boundary conditions for the diffusion of light,” J. Opt. Soc. Am. A12, 2532–2539 (1995). [CrossRef]
  12. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A16, 1066–1071 (1999). [CrossRef]
  13. J. Ripoll and M. Nieto-Vesperinas, “Index mismatch for diffuse photon density waves at both flat and rough diffuse-diffuse interfaces,” J. Opt. Soc. Am. A16, 1947–1957 (1999). [CrossRef]
  14. S. Fantini, M. A. Franceschini, and E. Gratton, “Effective source term in the diffusion equation for photon transport in turbid media,” Appl. Opt.36, 156–163 (1997). [CrossRef] [PubMed]
  15. X. Intes, B. Le Jeune, F. Pellen, Y. Guern, J. Cariou, and J. Lotrian, “Localization of the virtual point source used in the diffusion approximation to model a collimated beam source,” Waves Random Media9, 489–499 (1999). [CrossRef]
  16. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt.39, 6453–6465 (2000). [CrossRef]
  17. L.-H. Wang and S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A10, 1746–1752 (1993). [CrossRef]
  18. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Num. Math. Eng.65, 383–405 (2006). [CrossRef]
  19. H. Gao and H. Zhao, “A fast forward solver of radiative transfer equation,” Transp. Theory Stat. Phys38, 149–192 (2009). [CrossRef]
  20. A.D. Kim, “Correcting the diffusion approximation at the boundary,” J. Opt. Soc. Am. A28, 1007–1015 (2011). [CrossRef]
  21. E.W. Larsen and J. B. Keller, “Asymptotic solution of neutron transport problems for small mean free paths,” J. Math. Phys.15, 75–81 (1974). [CrossRef]
  22. G.J. Habetler and B. J. Matkowsky, “Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation,” J. Math. Phys.16, 846–854 (1975). [CrossRef]
  23. G.C. Pomraning and B. D. Ganapol, “Asymptotically consistent reflection boundary conditions for diffusion theory,” Ann. Nucl. Energy22, 787–817 (1995). [CrossRef]
  24. L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the Galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  25. J. Heino, S.R. Arridge, J. Sikora, and E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E68, 031908 (2003). [CrossRef]
  26. A.D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A20, 92–98 (2003). [CrossRef]
  27. A.D. Kim, “Transport theory for light propagation in biological tissue,” J. Opt. Soc. Am. A21, 820–827 (2004). [CrossRef]
  28. S.R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20, 299–299 (1993). [CrossRef] [PubMed]
  29. K.D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22, 691–702 (1995). [CrossRef] [PubMed]
  30. M. Schweiger and S.R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys.24, 895–902 (1997). [CrossRef] [PubMed]
  31. V. Kolehmainen, S.R. Arridge, W.R.B Lionheart, M. Vauhkonen, and J.P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inv. Prob.15, 1375–1391 (1999). [CrossRef]
  32. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J.P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt.44, 876–886 (2005). [CrossRef] [PubMed]
  33. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S.R. Arridge, and J.P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol, 50, 4913–4930 (2005). [CrossRef] [PubMed]
  34. A.D. Kim and M. Moscoso, “Diffusion of polarized light,” Multiscale Model. Simul.9, 1624–1645 (2011). [CrossRef]
  35. T. Tarvainen, V. Kolehmainen, S.R. Arridge, and J.P. Kaipio, “Image reconstruction in diffuse optical tomography using the coupled radiative transport-diffusion model,” J. Quant. Spect. Rad. Trans.1122600–2608 (2011). [CrossRef]
  36. M. Schweiger, S.R. Arridge, M. Hiraoka, and D.T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22, 1779–1792 (1995). [CrossRef] [PubMed]
  37. M. Keijzer, W.M. Star, and P.R.M. Storchi, “Optical diffusion in layered media,” Appl. Opt.27, 1820–1824 (1988). [CrossRef] [PubMed]
  38. G. Kanschat, “A robust finite element discretization for radiative transfer problems with scattering,” East West J. Num. Math.6, 265–272 (1998).
  39. S. Richling, E. Meinköhn, N. Kryzhevoi, and G. Kanschat, “Radiative transfer with finite elements,” Astron. Astrophys.380, 776–788 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited