OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 572–589

Wavelet denoising of multiframe optical coherence tomography data

Markus A. Mayer, Anja Borsdorf, Martin Wagner, Joachim Hornegger, Christian Y. Mardin, and Ralf P. Tornow  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 3, pp. 572-589 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

© 2012 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(100.7410) Image processing : Wavelets
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Image Processing

Original Manuscript: November 14, 2011
Revised Manuscript: January 18, 2012
Manuscript Accepted: January 20, 2012
Published: February 22, 2012

Markus A. Mayer, Anja Borsdorf, Martin Wagner, Joachim Hornegger, Christian Y. Mardin, and Ralf P. Tornow, "Wavelet denoising of multiframe optical coherence tomography data," Biomed. Opt. Express 3, 572-589 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).
  3. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003). [CrossRef] [PubMed]
  4. Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express17(5), 4046–4060 (2009). [CrossRef] [PubMed]
  5. F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009). [CrossRef] [PubMed]
  6. I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010). [CrossRef] [PubMed]
  7. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008). [CrossRef] [PubMed]
  8. D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).
  9. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010). [CrossRef]
  10. A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).
  11. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A14(6), 1231–1242 (1997). [CrossRef]
  12. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999). [CrossRef]
  13. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005). [CrossRef]
  14. N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010). [CrossRef] [PubMed]
  15. P. Lee, W. Gao, and X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography,” J. Opt. Soc. Am. A28(4), 517–522 (2011). [CrossRef]
  16. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000). [CrossRef]
  17. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003). [CrossRef] [PubMed]
  18. L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008). [PubMed]
  19. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010). [CrossRef] [PubMed]
  20. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006). [CrossRef] [PubMed]
  21. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003). [CrossRef] [PubMed]
  22. B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005). [CrossRef] [PubMed]
  23. T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).
  24. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011). [CrossRef]
  25. R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004). [CrossRef] [PubMed]
  26. M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology47(4), 641–655 (2002). [CrossRef] [PubMed]
  27. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A22(11), 2366–2371 (2005). [CrossRef]
  28. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010). [CrossRef] [PubMed]
  29. H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007). [CrossRef] [PubMed]
  30. R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010). [CrossRef]
  31. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009). [CrossRef] [PubMed]
  32. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004). [CrossRef]
  33. S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009). [CrossRef]
  34. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010). [CrossRef] [PubMed]
  35. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007). [CrossRef]
  36. W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008). [CrossRef]
  37. N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008). [PubMed]
  38. A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008). [CrossRef]
  39. A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008). [CrossRef] [PubMed]
  40. G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995). [CrossRef]
  41. I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005). [CrossRef]
  42. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001). [CrossRef]
  43. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  44. M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited