OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 590–604

Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy

Sameh Kessentini and Dominique Barchiesi  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 590-604 (2012)
http://dx.doi.org/10.1364/BOE.3.000590


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The purpose of this study is to get more efficient gold nanoparticles, for necrosis of cancer cells, in photothermal therapy. Therefore a numerical maximization of the absorption efficiency of a set of nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed, assuming that all the absorbed light is converted to heat. Two therapeutic cases (shallow and deep cancer) are considered. The numerical tools used in this study are the full Mie theory, the discrete dipole approximation and the particle swarm optimization. The optimization leads to an improved efficiency of the nanoparticles compared with previous studies. For the shallow cancer therapy, the hollow nanosphere seems to be more efficient than the other nanoparticles, whereas the hollow nanosphere and nanorod, offer comparable absorption efficiencies, for deep cancer therapy. Finally, a study of tolerance for the size parameters to guarantee an absorption efficiency threshold is included.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: November 29, 2011
Revised Manuscript: January 25, 2012
Manuscript Accepted: January 27, 2012
Published: February 22, 2012

Citation
Sameh Kessentini and Dominique Barchiesi, "Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy," Biomed. Opt. Express 3, 590-604 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008). [CrossRef]
  2. X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010). [CrossRef]
  3. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008). [CrossRef]
  4. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, London, 1990).
  5. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003). [CrossRef] [PubMed]
  6. A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008). [CrossRef]
  7. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006). [CrossRef] [PubMed]
  8. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006). [CrossRef]
  9. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006). [CrossRef]
  10. K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006). [CrossRef]
  11. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008). [CrossRef]
  12. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008). [CrossRef]
  13. T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008). [CrossRef] [PubMed]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). [CrossRef]
  15. S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.
  16. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005). [CrossRef]
  17. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008). [CrossRef]
  18. H. Devoe, “Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964). [CrossRef]
  19. H. Devoe, “Optical properties of molecular aggregates. II. classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965). [CrossRef]
  20. E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973). [CrossRef]
  21. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  22. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .
  23. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011). [CrossRef]
  24. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (2009), pp. 542–547. [CrossRef] [PubMed]
  25. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks (IEEE, 1995), vol. IV, pp. 1942–1948.
  26. Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009). [CrossRef]
  27. D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997). [CrossRef]
  28. S. Kessentini and D. Barchiesi, “A new strategy to improve particle swarm optimization exploration ability,” in 2010 Second WRI Global Congress onIntelligent Systems (GCIS) (IEEE, 2010), vol. 1, pp. 27 – 30.
  29. P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).
  30. C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010). [CrossRef]
  31. D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008). [CrossRef]
  32. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009). [CrossRef]
  33. D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.
  34. T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011). [CrossRef] [PubMed]
  35. V. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, Washington, 2007).
  36. J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009). [CrossRef]
  37. J. Z. Zhang, “Biomedical application of shape-controlled plasmonic nanostructure: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010). [CrossRef]
  38. T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009). [CrossRef]
  39. F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited