OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 605–611

Fiber laser-microscope system for femtosecond photodisruption of biological samples

Seydi Yavaş, Mutlu Erdogan, Kutan Gürel, F. Ömer Ilday, Y. Burak Eldeniz, and Uygar H. Tazebay  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 3, pp. 605-611 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

© 2012 OSA

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.7160) Medical optics and biotechnology : Ultrafast technology

ToC Category:
Laser-Tissue Interactions

Original Manuscript: January 24, 2012
Revised Manuscript: February 14, 2012
Manuscript Accepted: February 14, 2012
Published: February 22, 2012

Seydi Yavaş, Mutlu Erdogan, Kutan Gürel, F. Ömer Ilday, Y. Burak Eldeniz, and Uygar H. Tazebay, "Fiber laser-microscope system for femtosecond photodisruption of biological samples," Biomed. Opt. Express 3, 605-611 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990). [CrossRef] [PubMed]
  2. P. So, H. Kim, and I. Kochevar, “Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express3, 339–350 (1998). [CrossRef] [PubMed]
  3. A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005). [CrossRef] [PubMed]
  4. M. Erdoǧan, B. Öktem, H. Kalaycioǧlu, S. Yavaş, P.K. Mukhopadhyay, K. Eken, K. Özgören, Y. Aykaç, U.H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express19, 10986–10996 (2011). [CrossRef]
  5. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005). [CrossRef]
  6. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009). [CrossRef] [PubMed]
  7. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004). [CrossRef] [PubMed]
  8. L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007). [CrossRef] [PubMed]
  9. W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005). [CrossRef]
  10. J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007). [CrossRef] [PubMed]
  11. A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).
  12. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009). [CrossRef] [PubMed]
  13. I. L. Budunoǧlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett.34, 2516–2518 (2009). [CrossRef]
  14. K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36, 1299–1301 (2011). [CrossRef] [PubMed]
  15. F. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  16. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14, 10095–10100 (2006). [CrossRef] [PubMed]
  17. F. Ö. Ilday, H. Lim, J. R. Buckley, and F. Wise, “Practical all-fiber source of high-power, 120-fs pulses at 1 μm,” Opt. Lett.28, 1362–1364 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited