OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 3 — Mar. 1, 2012
  • pp: 650–660

Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures

Irina V. Larina, Kirill V. Larin, Mary E. Dickinson, and Michael Liebling  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 3, pp. 650-660 (2012)
http://dx.doi.org/10.1364/BOE.3.000650


View Full Text Article

Enhanced HTML    Acrobat PDF (2661 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography allows for dynamic, three-dimensional (3D+T) imaging of the heart within animal embryos. However, direct 3D+T imaging frame rates remain insufficient for cardiodynamic analysis. Previously, this limitation has been addressed by reconstructing 3D+T representations of the beating heart based on sets of two-dimensional image sequences (2D+T) acquired sequentially at high frame rate and in fixed (and parallel) planes throughout the heart. These methods either require additional hardware to trigger the acquisition of each 2D+T series to the same phase of the cardiac cycle or accumulate registration errors as the slices are synchronized retrospectively by pairs, without a gating signal. Here, we present a sequential turning acquisition and reconstruction (STAR) method for 3D+T imaging of periodically moving structures, which does not require any additional gating signal and is not prone to registration error accumulation. Similarly to other sequential cardiac imaging methods, multiple fast image series are consecutively acquired for different sections but in between acquisitions, the imaging plane is rotated around the center line instead of shifted along the direction perpendicular to the slices. As the central lines of all image-sequences coincide and represent measurements of the same spatial position, they can be used to accurately synchronize all the slices to a single inherent reference signal. We characterized the accuracy of our method on a simulated dynamic phantom and successfully imaged a beating embryonic rat heart. Potentially, this method can be applied for structural or Doppler imaging approaches with any direct space imaging modality such as computed tomography, ultrasound, or light microscopy.

© 2012 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.1655) Microscopy : Coherence tomography
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Image Processing

History
Original Manuscript: January 6, 2012
Revised Manuscript: February 14, 2012
Manuscript Accepted: February 17, 2012
Published: February 24, 2012

Citation
Irina V. Larina, Kirill V. Larin, Mary E. Dickinson, and Michael Liebling, "Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures," Biomed. Opt. Express 3, 650-660 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yelbuz, M. Choma, L. Thrane, M. Kirby, and J. Izatt, “A new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation106, 2771–2774 (2002). [CrossRef] [PubMed]
  2. I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical coherence tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev.21, 579–84 (2011). [CrossRef] [PubMed]
  3. I. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. Larin, and M. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt.13, 060506 (2008). [CrossRef]
  4. I. Larina, S. Ivers, S. Syed, M. Dickinson, and K. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett.34, 986–8 (2009). [CrossRef] [PubMed]
  5. K. V. Larin, I. V. Larina, M. Liebling, and M. E. Dickinson, “Live imaging of early developmental processes in mammalian embryos with optical coherence tomography,” J. Innovative Opt. Health Sci.2, 253–259 (2009). [CrossRef]
  6. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17, 10786–10799 (2009). [CrossRef] [PubMed]
  7. A. Liu, R. Wang, K. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt.14, 044020 (2009). [CrossRef] [PubMed]
  8. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10, 054001 (2005). [CrossRef] [PubMed]
  9. M. Liebling, A. S. Forouhar, R. Wolleschensky, B. Zimmerman, R. Ankerhold, S. E. Fraser, M. Gharib, and M. E. Dickinson, “Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development,” Dev. Dynam.235, 2940–2948 (2006). [CrossRef]
  10. S. Skare and J. L. R. Andersson, “On the effects of gating in diffusion imaging of the brain using single shot EPI,” Magn. Resonance Imaging19, 1125–1128 (2001). [CrossRef]
  11. M. Kachelrieß, D. A. Sennst, W. Maxlmoser, and W. A. Kalender, “Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart,” Med. Phys.29, 1489–1503 (2002). [CrossRef]
  12. M. Grass, R. Manzke, T. Nielsen, P. Koken, R. Proksa, M. Natanzon, and G. Shechter, “Helical cardiac cone beam reconstruction using retrospective ECG gating,” Phys. Med. Biol.48, 3069–3084 (2003). [CrossRef] [PubMed]
  13. M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc, “Time-resolved three-dimensional phase-contrast MRI,” J. Magn. Resonance Imaging17, 499–506 (2003). [CrossRef]
  14. R. Jerecic, M. Bock, S. Nielles-Vallespin, C. Wacker, W. Bauer, and L. R. Schad, “ECG-gated Na-23-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times,” Magn. Resonance Mater. Phys. Biol. Med.16, 297–302 (2004). [CrossRef]
  15. M. Jenkins, F. Rothenberg, D. Roy, V. Nikolski, Z. Hu, M. Watanabe, D. Wilson, I. Efimov, and A. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express14, 736–748 (2006). [CrossRef] [PubMed]
  16. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express15, 1627–1638 (2007). [CrossRef] [PubMed]
  17. J. Dinkel, S. H. Bartling, J. Kuntz, M. Grasruck, A. Kopp-Schneider, M. Iwasaki, S. Dimmeler, R. Gupta, W. Semmler, H.-U. Kauczor, and F. Kiessling, “Intrinsic gating for small-animal computed tomography a robust ECG-less paradigm for deriving cardiac phase information and functional imaging,” Circulat. Cardiovasc. Imaging.1, 235–243 (2008). [CrossRef]
  18. G. M. Treece, R. W. Prager, A. H. Gee, C. J. C. Cash, and L. Berman, “Grey-scale gating for freehand 3D ultrasound,” in 2002 IEEE International Symposium on Biomedical Imaging, 2002. Proceedings (IEEE, 2002), pp. 993–996.
  19. S. A. de Winter, R. Hamers, M. Degertekin, K. Tanabe, P. A. Lemos, P. W. Serruys, J. R. T. C. Roelandt, and N. Bruining, “Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method,” Catheterizat. Cardiovasc. Intervent.61, 84–94 (2004). [CrossRef]
  20. T. A. Spraggins, “Wireless retrospective gating—application to cine cardiac imaging,” Magn. Resonance Imaging8, 675–681 (1990). [CrossRef]
  21. R. B. Thompson and E. R. McVeigh, “Flow-gated phase-contrast MRI using radial acquisitions,” Magn. Resonance Med.52, 598–604 (2004). [CrossRef]
  22. A. C. Larson, R. D. White, G. Laub, E. R. McVeigh, D. B. Li, and O. P. Simonetti, “Self-gated cardiac cine MRI,” Magn. Resonance Med.51, 93–102 (2004). [CrossRef]
  23. M. E. Crowe, A. C. Larson, Q. Zhang, J. Carr, R. D. White, D. B. Li, and O. P. Simonetti, “Automated rectilinear self-gated cardiac cine imaging,” Magn. Resonance Med.52, 782–788 (2004). [CrossRef]
  24. C. Happel, J. Thommes, L. Thrane, J. Maenner, T. Ortmaier, B. Heimann, and T. Yelbuz, “Rotationally acquired four-dimensional optical coherence tomography of embryonic chick hearts using retrospective gating on the common central A-scan,” J. Biomed. Opt.16, 096007 (2011). [CrossRef] [PubMed]
  25. M. Liebling, J. Vermot, A. Forouhar, M. Gharib, M. Dickinson, and S. Fraser, “Nonuniform temporal alignment of slice sequences for four-dimensional imaging of cyclically deforming embryonic structures,” in 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006 (2006), pp. 1156–1159. [CrossRef]
  26. M. Unser, “Splines: a perfect fit for signal processing and image processing,” IEEE Signal Process. Mag.16, 22–38 (1999). [CrossRef]
  27. I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with doppler swept-source optical coherence tomography,” J. Biomed. Opt.14, 050506 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (7855 KB)      QuickTime
» Media 2: MOV (23026 KB)      QuickTime
» Media 3: MOV (2683 KB)      QuickTime
» Media 4: MOV (2480 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited