OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 692–700

Fast calculation of multipath diffusive reflectance in optical coherence tomography

Ivan T. Lima, Jr., Anshul Kalra, Hugo E. Hernández-Figueroa, and Sherif S. Sherif  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 4, pp. 692-700 (2012)
http://dx.doi.org/10.1364/BOE.3.000692


View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how to efficiently calculate the signal in optical coherence tomography (OCT) systems due to the ballistic photons, the quasi-ballistic photons, and the photons that undergo multiple diffusive scattering using Monte Carlo simulations with importance sampling. This method enables the calculation of these three components of the OCT signal with less than one hundredth of the computational time required by the conventional Monte Carlo method. Therefore, it can be used as a design tool to characterize the performance of OCT systems, and can also be used in the development of novel signal processing techniques that can extend the imaging range of OCT systems. We investigate the parameter dependence of our importance sampling method and we validate it by comparison to an existing method.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 10, 2012
Published: March 12, 2012

Citation
Ivan T. Lima, Anshul Kalra, Hugo E. Hernández-Figueroa, and Sherif S. Sherif, "Fast calculation of multipath diffusive reflectance in optical coherence tomography," Biomed. Opt. Express 3, 692-700 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-4-692


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  2. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006). [CrossRef] [PubMed]
  3. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol.44(9), 2307–2320 (1999). [CrossRef] [PubMed]
  4. I. T. Lima, A. Kalra, and S. S. Sherif, “Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography,” Biomed. Opt. Express2(5), 1069–1081 (2011). [CrossRef] [PubMed]
  5. G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett.14(3), 310–312 (2002). [CrossRef]
  6. I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett.15(1), 45–47 (2003). [CrossRef]
  7. I. T. Lima, A. M. Oliveira, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol.22(4), 1023–1032 (2004). [CrossRef]
  8. J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A13(5), 952–961 (1996). [CrossRef] [PubMed]
  9. H. Iwabuchi, “Efficient Monte Carlo method for radiative transfer modeling,” J. Atmos. Sci.63(9), 2324–2339 (2006). [CrossRef]
  10. N. Chen, “Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry,” Appl. Opt.46(10), 1597–1603 (2007). [CrossRef] [PubMed]
  11. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  12. I. T. Lima, Jr., “Advanced Monte Carlo methods applied to optical coherence tomography” (invited), presented at the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belém, Brazil, 3–6 Nov. 2009.
  13. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969). [CrossRef]
  14. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  15. “Monte Carlo simulations,” Oregon Medical Laser Center, accessed Jan. 1, 2009, http://omlc.ogi.edu/software/mc/ .
  16. The Gnu Project, “Gnu Scientific Library,” accessed June 15, 2011, http://www.gnu.org/s/gsl/ .
  17. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited