OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 701–714

Imaging flow dynamics in murine coronary arteries with spectral domain optical Doppler tomography

Daniel X. Hammer, Mircea Mujat, R. Daniel Ferguson, Nicusor Iftimia, Daniel Escobedo, J. Travis Jenkins, Hyunji Lim, Thomas E. Milner, and Marc D. Feldman  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 4, pp. 701-714 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Blood flow in murine epicardial and intra-myocardial coronary arteries was measured in vivo with spectral domain optical Doppler tomography (SD-ODT). Videos at frame rates up to 180 fps were collected and processed to extract phase shifts associated with moving erythrocytes in the coronary arteries. Radial averaging centered on the vessel lumen provided spatial smoothing of phase noise in a single cross-sectional frame for instantaneous peak velocity measurement without distortion of the flow profile. Temporal averaging synchronized to the cardiac cycle (i.e., gating) was also performed to reduce phase noise, although resulting in lower flow profiles. The vessel angle with respect to incident imaging beam was measured with three-dimensional raster scans collected from the same region as the high speed cross-sectional scans. The variability in peak phase measurement was 10-15% from cycle to cycle on a single animal but larger for measurements among animals. The inter-subject variability is attributed to factors related to real physiological and anatomical differences, instrumentation variables, and measurement error. The measured peak instantaneous flow velocity in a ~40-µm diameter vessel was 23.5 mm/s (28 kHz Doppler phase shift). In addition to measurement of the flow velocity, we observed several dynamic features of the vessel and surrounding myocardium in the intensity and phase sequences, including asymmetric vessel deformation and rapid flow reversal immediately following maximum flow, in confirmation of known coronary artery flow dynamics. SD-ODT is an optical imaging tool that can provide in vivo measures of structural and functional information on cardiac function in small animals.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: December 15, 2011
Revised Manuscript: January 27, 2012
Manuscript Accepted: January 18, 2012
Published: March 13, 2012

Daniel X. Hammer, Mircea Mujat, R. Daniel Ferguson, Nicusor Iftimia, Daniel Escobedo, J. Travis Jenkins, Hyunji Lim, Thomas E. Milner, and Marc D. Feldman, "Imaging flow dynamics in murine coronary arteries with spectral domain optical Doppler tomography," Biomed. Opt. Express 3, 701-714 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie, C. Gillespie, A. Go, K. Greenlund, N. Haase, S. Hailpern, P. M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. M. McDermott, J. Meigs, D. Mozaffarian, M. Mussolino, G. Nichol, V. L. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, T. Thom, S. Wasserthiel-Smoller, N. D. Wong, J. Wylie-Rosett, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2010 update: a report from the American Heart Association,” Circulation121(7), e46–e215 (2010). [CrossRef] [PubMed]
  2. J. Spaan, C. Kolyva, J. van den Wijngaard, R. ter Wee, P. van Horssen, J. Piek, and M. Siebes, “Coronary structure and perfusion in health and disease,” Philos. Transact. A Math. Phys. Eng. Sci.366(1878), 3137–3153 (2008). [CrossRef] [PubMed]
  3. Mouse Genome Sequencing Consortium, “Initial sequencing and comparative analysis of the mouse genome,” Nature420(6915), 520–562 (2002). [CrossRef] [PubMed]
  4. C. J. Hartley, A. K. Reddy, S. Madala, L. H. Michael, M. L. Entman, and G. E. Taffet, “Effects of isoflurane on coronary blood flow velocity in young, old and ApoE(-/-) mice measured by Doppler ultrasound,” Ultrasound Med. Biol.33(4), 512–521 (2007). [CrossRef] [PubMed]
  5. A. K. Reddy, S. Madala, A. D. Jones, W. A. Caro, J. F. Eberth, T. T. Pham, G. E. Taffet, and C. J. Hartley, “Multichannel pulsed Doppler signal processing for vascular measurements in mice,” Ultrasound Med. Biol.35(12), 2042–2054 (2009). [CrossRef] [PubMed]
  6. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008). [CrossRef] [PubMed]
  7. A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci.86(1), 6–19 (2005). [CrossRef] [PubMed]
  8. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  9. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express1(13), 424–431 (1997). [CrossRef] [PubMed]
  10. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  11. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  13. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  14. H. C. Hendargo, R. P. McNabb, A. H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011). [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  16. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express17(5), 4061–4073 (2009). [CrossRef] [PubMed]
  17. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  18. V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express11(14), 1650–1658 (2003). [CrossRef] [PubMed]
  19. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express15(4), 1627–1638 (2007). [CrossRef] [PubMed]
  20. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  21. J. W. Villard, M. D. Feldman, J. Kim, T. E. Milner, and G. L. Freeman, “Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography,” Circulation105(15), 1843–1849 (2002). [CrossRef] [PubMed]
  22. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation103(15), 1999–2003 (2001). [PubMed]
  23. G. J. Tearney, I. K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt.11(2), 021002 (2006). [CrossRef] [PubMed]
  24. D. Piao and Q. Zhu, “Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography,” Appl. Opt.42(25), 5158–5166 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (8512 KB)     
» Media 2: MOV (5633 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited