OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 715–734

Adaptive optics retinal imaging in the living mouse eye

Ying Geng, Alfredo Dubra, Lu Yin, William H. Merigan, Robin Sharma, Richard T. Libby, and David R. Williams  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 4, pp. 715-734 (2012)
http://dx.doi.org/10.1364/BOE.3.000715


View Full Text Article

Enhanced HTML    Acrobat PDF (2693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.7324) Vision, color, and visual optics : Visual optics, comparative animal models
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 14, 2012
Published: March 15, 2012

Citation
Ying Geng, Alfredo Dubra, Lu Yin, William H. Merigan, Robin Sharma, Richard T. Libby, and David R. Williams, "Adaptive optics retinal imaging in the living mouse eye," Biomed. Opt. Express 3, 715-734 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-4-715


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Chader, “Animal models in research on retinal degenerations: past progress and future hope,” Vision Res.42(4), 393–399 (2002). [CrossRef] [PubMed]
  2. H. Levkovitch-Verbin, “Animal models of optic nerve diseases,” Eye (Lond.)18(11), 1066–1074 (2004). [CrossRef] [PubMed]
  3. R. T. Libby, M. G. Anderson, I. H. Pang, Z. H. Robinson, O. V. Savinova, I. M. Cosma, A. Snow, L. A. Wilson, R. S. Smith, A. F. Clark, and S. W. John, “Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration,” Vis. Neurosci.22(05), 637–648 (2005). [CrossRef] [PubMed]
  4. B. Chang, N. L. Hawes, R. E. Hurd, J. Wang, D. Howell, M. T. Davisson, T. H. Roderick, S. Nusinowitz, and J. R. Heckenlively, “Mouse models of ocular diseases,” Vis. Neurosci.22(05), 587–593 (2005). [CrossRef] [PubMed]
  5. M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005). [CrossRef] [PubMed]
  6. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006). [CrossRef] [PubMed]
  7. M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J.-A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006). [CrossRef] [PubMed]
  8. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007). [CrossRef] [PubMed]
  9. A. Maass, P. L. von Leithner, V. Luong, L. Guo, T. E. Salt, F. W. Fitzke, and M. F. Cordeiro, “Assessment of rat and mouse RGC apoptosis imaging in vivo with different scanning laser ophthalmoscopes,” Curr. Eye Res.32(10), 851–861 (2007). [CrossRef] [PubMed]
  10. O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci.48(3), 1283–1289 (2007). [CrossRef] [PubMed]
  11. H. Murata, M. Aihara, Y. N. Chen, T. Ota, J. Numaga, and M. Araie, “Imaging mouse retinal ganglion cells and their loss in vivo by a fundus camera in the normal and ischemia-reperfusion model,” Invest. Ophthalmol. Vis. Sci.49(12), 5546–5552 (2008). [CrossRef] [PubMed]
  12. M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods169(1), 214–221 (2008). [CrossRef] [PubMed]
  13. M. D. Fischer, G. Huber, S. C. Beck, N. Tanimoto, R. Muehlfriedel, E. Fahl, C. Grimm, A. Wenzel, C. E. Remé, S. A. van de Pavert, J. Wijnholds, M. Pacal, R. Bremner, and M. W. Seeliger, “Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography,” PLoS ONE4(10), e7507 (2009). [CrossRef] [PubMed]
  14. C. K. S. Leung, R. N. Weinreb, Z. W. Li, S. Liu, J. D. Lindsey, N. Choi, L. Liu, C. Y. L. Cheung, C. Ye, K. L. Qiu, L. J. Chen, W. H. Yung, J. G. Crowston, M. L. Pu, K. F. So, C. P. Pang, and D. S. C. Lam, “Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci.52(3), 1539–1547 (2011). [CrossRef] [PubMed]
  15. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011). [CrossRef] [PubMed]
  16. E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res.46(16), 2546–2553 (2006). [CrossRef] [PubMed]
  17. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  18. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  19. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci.49(1), 467–473 (2008). [CrossRef] [PubMed]
  20. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2009). [CrossRef] [PubMed]
  21. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  22. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  23. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007). [CrossRef] [PubMed]
  24. C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Proc. SPIE7550, 755019 (2010). [CrossRef]
  25. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009). [CrossRef] [PubMed]
  26. A. Sorsby, M. Sheridan, G. A. Leary, and B. Benjamin, “Vision, visual acuity, and ocular refraction of young men: findings in a sample of 1,033 subjects,” BMJ1(5183), 1394–1398 (1960). [CrossRef] [PubMed]
  27. Q. Wang, B. E. Klein, R. Klein, and S. E. Moss, “Refractive status in the Beaver Dam Eye Study,” Invest. Ophthalmol. Vis. Sci.35(13), 4344–4347 (1994). [PubMed]
  28. C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res.44(16), 1857–1867 (2004). [CrossRef] [PubMed]
  29. J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci.44(1), 32–36 (2003). [CrossRef] [PubMed]
  30. Y. Le Grand, Physiological Optics, Vol. 13 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1980), p. xvii.
  31. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009). [CrossRef] [PubMed]
  32. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  33. ANSI, “American National Standard for the Safe Use of Lasers ANSI Z136.1-2007” (Laser Institute of America, 2007).
  34. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  35. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration, B. Fischer, B. Dawant, and C. Lorenz, eds. (Springer Berlin, 2010), pp. 60–71.
  36. L. Wang, J. Dong, G. Cull, B. Fortune, and G. A. Cioffi, “Varicosities of intraretinal ganglion cell axons in human and nonhuman primates,” Invest. Ophthalmol. Vis. Sci.44(1), 2–9 (2003). [CrossRef] [PubMed]
  37. R. A. Cuthbertson and T. E. Mandel, “Anatomy of the mouse retina. Endothelial cell-pericyte ratio and capillary distribution,” Invest. Ophthalmol. Vis. Sci.27(11), 1659–1664 (1986). [PubMed]
  38. M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci.44(11), 4960–4967 (2003). [CrossRef] [PubMed]
  39. S. A. Burns, Z. Zhangyi, T. Y. P. Chui, H. Song, A. E. Elsner, and V. E. Malinovsky, “Imaging the inner retina using adaptive optics,” nvest. Ophthalmol. Vis. Sci.49, 4512–9999 (2008).
  40. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010). [CrossRef] [PubMed]
  41. C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci.18(21), 8936–8946 (1998). [PubMed]
  42. J. B. Schallek, B. D. Masella, J. J. Hunter, and D. R. Williams, “Stimulus-dependent changes in capillary blood velocity revealed with adaptive optics scanning laser ophthalmoscopy,” presented at The Association for Research in Vision and Ophthalmology Annual Meeting, Fort Lauderdale, FL, May 1–5, 2011).
  43. Z. Y. Zhong, B. L. Petrig, X. F. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008). [PubMed]
  44. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(4), 781–793 (2011). [CrossRef] [PubMed]
  45. Z. Y. Zhong, H. X. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011). [CrossRef] [PubMed]
  46. S. Thanos, L. Indorf, and R. Naskar, “In vivo FM: using conventional fluorescence microscopy to monitor retinal neuronal death in vivo,” Trends Neurosci.25(9), 441–444 (2002). [CrossRef] [PubMed]
  47. T. Higashide, I. Kawaguchi, S. Ohkubo, H. Takeda, and K. Sugiyama, “In vivo imaging and counting of rat retinal ganglion cells using a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci.47(7), 2943–2950 (2006). [CrossRef] [PubMed]
  48. J. Coombs, D. van der List, G. Y. Wang, and L. M. Chalupa, “Morphological properties of mouse retinal ganglion cells,” Neuroscience140(1), 123–136 (2006). [CrossRef] [PubMed]
  49. W. Sun, N. Li, and S. He, “Large-scale morphological survey of mouse retinal ganglion cells,” J. Comp. Neurol.451(2), 115–126 (2002). [CrossRef] [PubMed]
  50. T. C. Badea and J. Nathans, “Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter,” J. Comp. Neurol.480(4), 331–351 (2004). [CrossRef] [PubMed]
  51. J.-H. Kong, D. R. Fish, R. L. Rockhill, and R. H. Masland, “Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits,” J. Comp. Neurol.489(3), 293–310 (2005). [CrossRef] [PubMed]
  52. S. Haverkamp and H. Wässle, “Immunocytochemical analysis of the mouse retina,” J. Comp. Neurol.424(1), 1–23 (2000). [CrossRef] [PubMed]
  53. F. Chan, A. Bradley, T. G. Wensel, and J. H. Wilson, “Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy,” Proc. Natl. Acad. Sci. U.S.A.101(24), 9109–9114 (2004). [CrossRef] [PubMed]
  54. A. Dhingra, P. Sulaiman, Y. Xu, M. E. Fina, R. W. Veh, and N. Vardi, “Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse,” J. Comp. Neurol.510(5), 484–496 (2008). [CrossRef] [PubMed]
  55. J. G. Flannery, S. Zolotukhin, M. I. Vaquero, M. M. LaVail, N. Muzyczka, and W. W. Hauswirth, “Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus,” Proc. Natl. Acad. Sci. U.S.A.94(13), 6916–6921 (1997). [CrossRef] [PubMed]
  56. F. Rolling, “Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives,” Gene Ther.11(Suppl 1), S26–S32 (2004). [CrossRef] [PubMed]
  57. K. P. Greenberg, E. S. Lee, D. V. Schaffer, and J. G. Flannery, “Gene delivery to the retina using lentiviral vectors,” Adv. Exp. Med. Biol.572, 255–266 (2006). [CrossRef] [PubMed]
  58. K. P. Greenberg, S. F. Geller, D. V. Schaffer, and J. G. Flannery, “Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors,” Invest. Ophthalmol. Vis. Sci.48(4), 1844–1852 (2007). [CrossRef] [PubMed]
  59. P. Charbel Issa, M. S. Singh, D. M. Lipinski, N. V. Chong, F. C. Delori, A. R. Barnard, and R. E. Maclaren, “Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration,” Invest. Ophthalmol. Vis. Sci.53, iovs.11-8767 (2011). [PubMed]
  60. L. Yin, A. H. Cetin, Y. Geng, R. Sharma, A. Ahmad, E. M. Callaway, D. R. Williams, and W. H. Merigan, “In vivo optical recording from mouse retinal ganglion cells,” presented at Neuroscience 2011, Society for Neuroscience Annual Meeting, Washington, DC, Nov. 12–16, 2011.
  61. J. B. Schallek, Y. Geng, and D. R. Williams, “In vivo fluorescence adaptive optics scanning laser ophthalmoscopy (FAOSLO) of retinal pericytes and capillary blood flow in mice,” to be presented at The Association for Research in Vision and Ophthalmology Annual Meeting, Fort Lauderdale, FL, May 6–10, 2012.
  62. I. J. Kim, Y. F. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010). [CrossRef] [PubMed]
  63. Y. Han and S. C. Massey, “Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13313–13318 (2005). [CrossRef] [PubMed]
  64. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  65. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express2(1), 139–148 (2011). [CrossRef] [PubMed]
  66. R. Sharma, Y. Geng, L. Yin, W. H. Merigan, D. R. Williams, and J. J. Hunter, “In vivo two-photon imaging of mouse retina,” to be presented at The Association for Research in Vision and Ophthalmology Annual Meeting, Fort Lauderdale, FL, May 6–10, 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (62631 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited