OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 4 — Apr. 1, 2012
  • pp: 735–740

Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography

Norihiko Nishizawa, Shutaro Ishida, Mika Hirose, Shigeru Sugiyama, Tsuyoshi Inoue, Yusuke Mori, Kazuyoshi Itoh, and Hiroyoshi Matsumura  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 4, pp. 735-740 (2012)
http://dx.doi.org/10.1364/BOE.3.000735


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micro-scale, non-invasive, three-dimensional cross-sectional imaging of protein crystals was successfully accomplished using ultra-high resolution optical coherence tomography (UHR-OCT) with low noise, Gaussian like supercontinuum. This technique facilitated visualization of protein crystals even those in medium that also contained substantial amounts of precipitates. We found the enhancement of the scattered signal from protein crystal by inclusion of agarose gel in the crystallization medium. Crystals of a protein and a salt in the same sample when visualized by UHR-OCT showed distinct physical characteristics, suggesting that protein and salt crystals may, in general, be distinguishable by UHR-OCT. UHR-OCT is a nondestructive and rapid method, which should therefore find use in automated systems designed to visualize crystals.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: February 7, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 14, 2012
Published: March 15, 2012

Citation
Norihiko Nishizawa, Shutaro Ishida, Mika Hirose, Shigeru Sugiyama, Tsuyoshi Inoue, Yusuke Mori, Kazuyoshi Itoh, and Hiroyoshi Matsumura, "Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography," Biomed. Opt. Express 3, 735-740 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-4-735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. D Biol. Crystallogr. 61(1), 60–66 (2005). [CrossRef] [PubMed]
  2. J. J. Kehoe, G. E. Remondetto, M. Subirade, E. R. Morris, and A. Brodkorb, “Tryptophan-mediated denaturation of beta-lactoglobulin A by UV irradiation,” J. Agric. Food Chem. 56(12), 4720–4725 (2008). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002)
  5. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography (Springer, 2008).
  6. J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. S. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, “Optical coherence tomography of glass reinforced polymer composites,” Compos., Part A Appl. Sci. Manuf. 30, 139–145 (1999). [CrossRef]
  7. C. Biertümpfel, J. Basquin, D. Suck, and C. Sauter, “Crystallization of biological macromolecules using agarose gel,” Acta Crystallogr. D Biol. Crystallogr. 58(10), 1657–1659 (2002). [CrossRef] [PubMed]
  8. B. Lorber, C. Sauter, M. C. Robert, B. Capelle, and R. Giegé, “Crystallization within agarose gel in microgravity improves the quality of thaumatin crystals,” Acta Crystallogr. D Biol. Crystallogr. 55(9), 1491–1494 (1999). [CrossRef] [PubMed]
  9. S. Sugiyama, H. Hasenaka, M. Hirose, N. Shimizu, T. Kitatani, Y. Takahashi, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, and H. Matsumura, “Femtosecond laser processing of Agarose gel surrounding protein crystals for development of an automated Crystal capturing system,” Jpn. J. Appl. Phys. 48(10), 105502 (2009). [CrossRef]
  10. H. Hasenaka, S. Sugiyama, M. Hirose, N. Shimizu, T. Kitatani, Y. Takahashi, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, and H. Matsumura, “Femtosecond laser processing of protein crystals grown in agarose gel,” J. Cryst. Growth 312(1), 73–78 (2009). [CrossRef]
  11. S. Sugiyama, M. Hirose, N. Shimizu, M. Niiyama, M. Maruyama, G. Sazaki, R. Murai, H. Adachi, K. Takano, S. Murakami, T. Inoue, Y. Mori, and H. Matsumura, “Effect of evaporation on protein crystals grown in semi-solid agarose hydrogel,” Jpn. J. Appl. Phys. 50(2), 025502 (2011). [CrossRef]
  12. C. Sauter, B. Lorber, and R. Giegé, “Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature,” Proteins 48(2), 146–150 (2002). [CrossRef] [PubMed]
  13. K. Tanabe, M. Hirose, R. Murai, S. Sugiyama, N. Shimizu, M. Maruyama, Y. Takahashi, H. Adachi, K. Takano, S. Murakami, Y. Mori, E. Mizohata, T. Inoue, and H. Matsumura, “Promotion of crystal nucleation of protein by semi-solid Agarose gel,” Appl. Phys. Express 2(12), 125501 (2009). [CrossRef]
  14. K. J. Thiessen, “The use of two novel methods to grow protein crystals by microdialysis and vapor diffusion in an agarose gel,” Acta Crystallogr. D Biol. Crystallogr. 50(4), 491–495 (1994). [CrossRef] [PubMed]
  15. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001). [CrossRef] [PubMed]
  16. J. G. Fujimoto, A. D. Aguirre, Y. Chen, P. R. Herz, P.-L. Hsiung, T. H. Ko, N. Nishizawa, and F. X. Kartner, Ultrashort Laser Pulses in Biology and Medicine (Springer, 2007), Chap. 1.
  17. M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using Gaussian-shaped super continuum,” Jpn. J. Appl. Phys. 49(1), 012701 (2010). [CrossRef]
  18. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012). [CrossRef] [PubMed]
  19. D. Kobayashi, M. Tamoi, T. Iwaki, S. Shigeoka, and A. Wadano, “Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942,” Plant Cell Physiol. 44(3), 269–276 (2003). [CrossRef] [PubMed]
  20. A. Wadano, Y. Kamata, T. Iwaki, K. Nishikawa, and T. Hirahashi, “Purification and characterization of phosphoribulokinase from the cyanobacterium Synechococcus PCC7942,” Plant Cell Physiol. 36(7), 1381–1385 (1995). [PubMed]
  21. J. A. Gavira and J. M. García-Ruiz, “Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals,” Acta Crystallogr. D Biol. Crystallogr. 58(10), 1653–1656 (2002). [CrossRef] [PubMed]
  22. S. Sugiyama, K. Tanabe, M. Hirose, T. Kitatani, H. Hasenaka, Y. Takahashi, H. Adachi, K. Takano, S. Murakami, Y. Mori, T. Inoue, and H. Matsumura, “Protein crystallization in Agarose gel with high strength: developing an automated system for protein crystallographic processes,” Jpn. J. Appl. Phys. 48(7), 075502 (2009). [CrossRef]
  23. N. Pernodet, M. Maaloum, and B. Tinland, “Pore size of agarose gels by atomic force microscopy,” Electrophoresis 18(1), 55–58 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MOV (3829 KB)     
» Media 2: MOV (3999 KB)     
» Media 3: MOV (3903 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited