OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1006–1024

Parametric level set reconstruction methods for hyperspectral diffuse optical tomography

Fridrik Larusson, Sergio Fantini, and Eric L. Miller  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 1006-1024 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A parametric level set method (PaLS) is implemented for image reconstruction for hyperspectral diffuse optical tomography (DOT). Chromophore concentrations and diffusion amplitude are recovered using a linearized Born approximation model and employing data from over 100 wavelengths. The images to be recovered are taken to be piecewise constant and a newly introduced, shape-based model is used as the foundation for reconstruction. The PaLS method significantly reduces the number of unknowns relative to more traditional level-set reconstruction methods and has been show to be particularly well suited for ill-posed inverse problems such as the one of interest here. We report on reconstructions for multiple chromophores from simulated and experimental data where the PaLS method provides a more accurate estimation of chromophore concentrations compared to a pixel-based method.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: January 27, 2012
Manuscript Accepted: March 15, 2012
Published: April 18, 2012

Fridrik Larusson, Sergio Fantini, and Eric L. Miller, "Parametric level set reconstruction methods for hyperspectral diffuse optical tomography," Biomed. Opt. Express 3, 1006-1024 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005). [PubMed]
  2. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000). [CrossRef] [PubMed]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001). [CrossRef]
  4. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999). [CrossRef] [PubMed]
  5. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999). [CrossRef] [PubMed]
  6. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010). [CrossRef]
  7. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005). [CrossRef] [PubMed]
  8. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004). [CrossRef]
  9. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001). [CrossRef]
  10. F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011). [CrossRef]
  11. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999). [CrossRef]
  12. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35, 3447–3458, (1996). [CrossRef] [PubMed]
  13. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007). [CrossRef] [PubMed]
  14. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express1, 404–413 (1997). [CrossRef] [PubMed]
  15. A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011). [CrossRef]
  16. A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.
  17. F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.
  18. O. Dorn, “A shape reconstruction method for diffuse optical tomography using a transport model and level sets,” in 2002 IEEE International Symposium on Biomedical Imaging, 2002. Proceedings (IEEE, 2002), pp. 1015–1018.
  19. M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008). [CrossRef]
  20. M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003). [CrossRef] [PubMed]
  21. S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008). [CrossRef]
  22. O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006). [CrossRef]
  23. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995). [CrossRef]
  24. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006). [CrossRef] [PubMed]
  25. D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994). [CrossRef] [PubMed]
  26. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, 2001).
  27. B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008). [CrossRef] [PubMed]
  28. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005). [CrossRef] [PubMed]
  29. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007). [CrossRef]
  30. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010). [CrossRef] [PubMed]
  31. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010). [CrossRef] [PubMed]
  32. T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001). [CrossRef]
  33. H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000). [CrossRef]
  34. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)
  35. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005). [CrossRef] [PubMed]
  36. K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).
  37. C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2002) [CrossRef]
  38. T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008). [CrossRef]
  39. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009). [CrossRef] [PubMed]
  40. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003). [CrossRef] [PubMed]
  41. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003). [CrossRef] [PubMed]
  42. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water” (Oregon Medical Laser Center, 2007), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  43. A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).
  44. J. D. Vylder and W. Philips, “A computational efficient external energy for active contour segmentation using edge propagation,” in IEEE 2100 International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 661–664.
  45. T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002). [CrossRef] [PubMed]
  46. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004). [CrossRef] [PubMed]
  47. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003). [CrossRef] [PubMed]
  48. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007). [CrossRef] [PubMed]
  49. E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997). [CrossRef] [PubMed]
  50. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004). [CrossRef] [PubMed]
  51. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005). [CrossRef] [PubMed]
  52. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995). [CrossRef]
  53. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000). [CrossRef] [PubMed]
  54. M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited