OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1047–1061

Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT

WooJhon Choi, Bernhard Baumann, Jonathan J. Liu, Allen C. Clermont, Edward P. Feener, Jay S. Duker, and James G. Fujimoto  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 1047-1061 (2012)
http://dx.doi.org/10.1364/BOE.3.001047


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small. Combined with ultrahigh speed, this approach enables high volume acquisition rates necessary for pulsatile total flow measurement without modification in the OCT system optics. A spectral domain OCT system at 840nm with an axial scan rate of 244kHz was used for this study. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was ±37.7mm/s. By repeatedly scanning a small area centered at the central retinal artery with high volume acquisition rates, pulsatile flow characteristics, such as systolic, diastolic, and mean total flow values, were measured. Real-time Doppler C-scan preview is proposed as a guidance tool to enable quick and easy alignment necessary for large scale studies. Data processing for flow calculation can be entirely automatic using this approach because of the simple and robust algorithm. Due to the rapid volume acquisition rate and the fact that the measurement is independent of Doppler angle, this approach is inherently less sensitive to involuntary eye motion. This method should be useful for investigation of small animal models of ocular diseases as well as total blood flow measurements in human patients in the clinic.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: March 6, 2012
Revised Manuscript: April 10, 2012
Manuscript Accepted: April 16, 2012
Published: April 19, 2012

Citation
WooJhon Choi, Bernhard Baumann, Jonathan J. Liu, Allen C. Clermont, Edward P. Feener, Jay S. Duker, and James G. Fujimoto, "Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT," Biomed. Opt. Express 3, 1047-1061 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-1047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002). [CrossRef] [PubMed]
  2. R. N. Weinreb and A. Harris, Consensus Series—6: Ocular Blood Flow in Glaucoma (Kugler, Amsterdam, 2009).
  3. H. S. Chung, A. Harris, T. A. Ciulla, and L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res.18(5), 669–687 (1999). [CrossRef] [PubMed]
  4. E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124(5), 677–682 (1997). [PubMed]
  5. L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia42(4), 387–405 (1999). [CrossRef] [PubMed]
  6. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992). [CrossRef] [PubMed]
  7. Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007). [CrossRef] [PubMed]
  8. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  9. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer-Verlag Berlin, 2008).
  10. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  11. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett.29(2), 171–173 (2004). [CrossRef] [PubMed]
  12. H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express15(23), 15193–15206 (2007). [CrossRef] [PubMed]
  13. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008). [CrossRef] [PubMed]
  14. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express17(5), 4177–4188 (2009). [CrossRef] [PubMed]
  15. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009). [CrossRef] [PubMed]
  16. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  17. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011). [CrossRef] [PubMed]
  18. A. S. G. Singh, C. K. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  19. Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011). [CrossRef] [PubMed]
  20. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. C. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  21. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010). [CrossRef] [PubMed]
  22. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  23. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011). [CrossRef] [PubMed]
  24. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  25. B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008). [CrossRef] [PubMed]
  26. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008). [CrossRef] [PubMed]
  27. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2010).
  28. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited