OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1077–1085

In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems

David M. Huland, Christopher M. Brown, Scott S. Howard, Dimitre G. Ouzounov, Ina Pavlova, Ke Wang, David R. Rivera, Watt W. Webb, and Chris Xu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 1077-1085 (2012)
http://dx.doi.org/10.1364/BOE.3.001077


View Full Text Article

Enhanced HTML    Acrobat PDF (1996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize long (up to 285 mm) gradient index (GRIN) lens endoscope systems for multiphoton imaging. We fabricate a portable, rigid endoscope system suitable for imaging unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The portable device is capable of imaging a ~200 µm diameter field of view at 4 frames/s. The lateral and axial resolution in water is 0.85 µm and 7.4 µm respectively. In vivo images of unstained tissues in live, anesthetized rats using the portable device are presented. These results show great promise for GRIN endoscopy to be used clinically.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: February 9, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 14, 2012
Published: April 19, 2012

Citation
David M. Huland, Christopher M. Brown, Scott S. Howard, Dimitre G. Ouzounov, Ina Pavlova, Ke Wang, David R. Rivera, Watt W. Webb, and Chris Xu, "In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems," Biomed. Opt. Express 3, 1077-1085 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-1077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. S. J. Lin, S. H. Jee, C. J. Kuo, R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, and C. Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Opt. Lett.31(18), 2756–2758 (2006). [CrossRef] [PubMed]
  3. S. Mukherjee, J. S. Wysock, C. K. Ng, M. Akhtar, S. Perner, M. M. Lee, M. A. Rubin, F. R. Maxfield, W. W. Webb, and D. S. Scherr, “Human bladder cancer diagnosis using Multiphoton microscopy,” Proc. SPIE7161, 716117, 716117-10 (2009). [CrossRef]
  4. I. Pavlova, K. R. Hume, S. A. Yazinski, J. Flanders, T. L. Southard, R. S. Weiss, and W. W. Webb, “Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung,” J. Biomed. Opt.17(3), 036014 (2012). [CrossRef]
  5. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res.65(4), 1180–1186 (2005). [CrossRef] [PubMed]
  6. C. C. Wang, F. C. Li, R. J. Wu, V. A. Hovhannisyan, W. C. Lin, S. J. Lin, P. T. So, and C. Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009). [CrossRef] [PubMed]
  7. P. Wilder-Smith, K. Osann, N. Hanna, N. El Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med.35(2), 96–103 (2004). [CrossRef] [PubMed]
  8. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  9. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011). [CrossRef] [PubMed]
  10. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt.12(4), 040501 (2007). [CrossRef] [PubMed]
  11. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  12. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  13. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y. C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009). [CrossRef] [PubMed]
  14. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  15. E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002). [CrossRef] [PubMed]
  16. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Use of a lensed fiber for a large-field-of-view, high-resolution, fiber-scanning microendoscope,” Opt. Lett.37(5), 881–883 (2012). [CrossRef] [PubMed]
  17. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett.37(8), 1349–1351 (2012). [CrossRef]
  18. C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17(4), 040505 (2012). [CrossRef]
  19. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  20. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  21. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  22. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  23. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007). [CrossRef] [PubMed]
  24. R. S. Pillai, D. Lorenser, and D. D. Sampson, “Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles,” Opt. Express19(8), 7213–7221 (2011). [CrossRef] [PubMed]
  25. Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods156(1-2), 351–359 (2006). [CrossRef] [PubMed]
  26. M. E. Durst, D. Kobat, and C. Xu, “Tunable dispersion compensation by a rotating cylindrical lens,” Opt. Lett.34(8), 1195–1197 (2009). [CrossRef] [PubMed]
  27. L. P. Gartner and J. L. Hiatt, Color Textbook of Histology (W.B. Saunders, Philadelphia, 2001).
  28. J. M. Dela Cruz, J. D. McMullen, R. M. Williams, and W. R. Zipfel, “Feasibility of using multiphoton excited tissue autofluorescence for in vivo human histopathology,” Biomed. Opt. Express1(5), 1320–1330 (2010). [CrossRef] [PubMed]
  29. R. Ramasamy, J. Sterling, E. S. Fisher, P. S. Li, M. Jain, B. D. Robinson, M. Shevchuck, D. Huland, C. Xu, S. Mukherjee, and P. N. Schlegel, “Identification of spermatogenesis with multiphoton microscopy: an evaluation in a rodent model,” J. Urol.186(6), 2487–2492 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited