OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 1086–1100

Scattering phase function spectrum makes reflectance spectrum measured from Intralipid phantoms and tissue sensitive to the device detection geometry

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 1086-1100 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflectance spectra measured in Intralipid (IL) close to the source are sensitive to wavelength-dependent changes in reduced scattering coefficient (μs) and scattering phase function (PF). Experiments and simulations were performed using device designs with either single or separate optical fibers for delivery and collection of light in varying concentrations of IL. Spectral reflectance is not consistently linear with varying IL concentration, with PF-dependent effects observed for single fiber devices with diameters smaller than ten transport lengths and for separate source-detector devices that collected light at less than half of a transport length from the source. Similar effects are thought to be seen in tissue, limiting the ability to quantitatively compare spectra from different devices without compensation.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 2, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 20, 2012
Published: April 24, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, "Scattering phase function spectrum makes reflectance spectrum measured from Intralipid phantoms and tissue sensitive to the device detection geometry," Biomed. Opt. Express 3, 1086-1100 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Amelink, O. P. Kaspers, H. J. C. M. Sterenborg, J. E. van der Wal, J. L. N. Roodenburg, and M. J. H. Witjes, “Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy,” Oral Oncol.44(1), 65–71 (2008). [CrossRef] [PubMed]
  2. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009). [CrossRef] [PubMed]
  3. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells,” Cancer84(6), 366–374 (1998). [CrossRef] [PubMed]
  4. K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol.6(5), 651–658 (2002). [CrossRef] [PubMed]
  5. I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther.3(3), 259–267 (2004). [CrossRef] [PubMed]
  6. P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14(3), 034034 (2009). [CrossRef] [PubMed]
  7. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt.40(34), 6389–6395 (2001). [CrossRef] [PubMed]
  8. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40(25), 4633–4646 (2001). [CrossRef] [PubMed]
  9. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3(1), 137–152 (2012). [CrossRef] [PubMed]
  10. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  11. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  12. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999). [CrossRef] [PubMed]
  13. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36(4), 949–957 (1997). [CrossRef] [PubMed]
  14. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003). [CrossRef] [PubMed]
  15. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt.43(15), 3048–3054 (2004). [CrossRef] [PubMed]
  16. M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express13(13), 4828–4842 (2005). [CrossRef] [PubMed]
  17. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  18. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010). [CrossRef] [PubMed]
  19. V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett.36(10), 1911–1913 (2011). [CrossRef] [PubMed]
  20. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  21. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  22. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt.42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  23. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15(2), 486–500 (2007). [CrossRef] [PubMed]
  24. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  25. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  26. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008). [CrossRef] [PubMed]
  27. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett.21(7), 546–548 (1996). [CrossRef] [PubMed]
  28. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16(12), 2935–2945 (1999). [CrossRef]
  29. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett.26(20), 1571–1573 (2001). [CrossRef] [PubMed]
  30. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt.34(31), 7410–7418 (1995). [CrossRef] [PubMed]
  31. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  32. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A18(3), 584–599 (2001). [CrossRef]
  33. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38(22), 4939–4950 (1999). [CrossRef] [PubMed]
  34. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36(15), 2997–2999 (2011). [CrossRef] [PubMed]
  35. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2(6), 1687–1702 (2011). [CrossRef] [PubMed]
  36. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17(2), 860–871 (2009). [CrossRef] [PubMed]
  37. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  38. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  39. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54(22), 6991–7008 (2009). [CrossRef] [PubMed]
  40. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt.37(31), 7429–7436 (1998). [CrossRef] [PubMed]
  41. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2(11), 3150–3166 (2011). [CrossRef] [PubMed]
  42. B. Gélébart, E. Tinet, J. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt.5(4), 377–388 (1996). [CrossRef]
  43. J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express11(25), 3473–3484 (2003). [CrossRef] [PubMed]
  44. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron.9(2), 243–256 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited