OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 840–853

Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

Donald A. Peyrot, Claire Lefort, Marie Steffenhagen, Tigran Mansuryan, Guillaume Ducourthial, Darine Abi-Haidar, Nicolas Sandeau, Christine Vever-Bizet, Sergei G. Kruglik, Luc Thiberville, Frédéric Louradour, and Geneviève Bourg-Heckly  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 840-853 (2012)
http://dx.doi.org/10.1364/BOE.3.000840


View Full Text Article

Acrobat PDF (2838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle.

© 2012 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(190.4180) Nonlinear optics : Multiphoton processes
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: March 2, 2012
Revised Manuscript: March 23, 2012
Manuscript Accepted: March 23, 2012
Published: April 3, 2012

Citation
Donald A. Peyrot, Claire Lefort, Marie Steffenhagen, Tigran Mansuryan, Guillaume Ducourthial, Darine Abi-Haidar, Nicolas Sandeau, Christine Vever-Bizet, Sergei G. Kruglik, Luc Thiberville, Frédéric Louradour, and Geneviève Bourg-Heckly, "Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration," Biomed. Opt. Express 3, 840-853 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-840


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  3. S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express14(17), 7810–7820 (2006). [CrossRef] [PubMed]
  4. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007). [CrossRef] [PubMed]
  5. D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010). [CrossRef] [PubMed]
  6. L. Jay, A. Brocas, K. Singh, J.-C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express16(21), 16284–16293 (2008). [CrossRef] [PubMed]
  7. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007). [CrossRef] [PubMed]
  8. J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011). [CrossRef] [PubMed]
  9. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010). [CrossRef] [PubMed]
  10. S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008). [CrossRef] [PubMed]
  11. A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007). [CrossRef] [PubMed]
  12. C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009). [CrossRef] [PubMed]
  13. T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010). [CrossRef] [PubMed]
  14. T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010). [CrossRef] [PubMed]
  15. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007). [CrossRef] [PubMed]
  16. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009). [CrossRef] [PubMed]
  17. B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011). [CrossRef] [PubMed]
  18. F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007). [CrossRef] [PubMed]
  19. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthélémy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011). [CrossRef] [PubMed]
  20. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  21. M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993). [CrossRef]
  22. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009). [CrossRef] [PubMed]
  23. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010). [CrossRef] [PubMed]
  24. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handled two-photon fluorescence microendoscope with a 475 µm × 475 µm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008). [CrossRef] [PubMed]
  25. S. W. Clark, F. O. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett.26(17), 1320–1322 (2001). [CrossRef] [PubMed]
  26. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009). [CrossRef] [PubMed]
  27. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett.9(5), 150–152 (1984). [CrossRef] [PubMed]
  28. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969). [CrossRef]
  29. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993). [CrossRef]
  30. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett.31(22), 3363–3365 (2006). [CrossRef] [PubMed]
  31. A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express18(21), 21973–21980 (2010). [CrossRef] [PubMed]
  32. F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008). [CrossRef] [PubMed]
  33. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968). [CrossRef]
  34. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002). [CrossRef] [PubMed]
  35. D. P. Thornhill, “Separation of a series of chromophores and fluorophores present in elastin,” Biochem. J.147(2), 215–219 (1975). [PubMed]
  36. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004). [CrossRef] [PubMed]
  37. J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007). [CrossRef]
  38. L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005). [CrossRef] [PubMed]
  39. T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited