OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 863–877

Chaos in ocular aberration dynamics of the human eye

Karen M. Hampson and Edward A. H. Mallen  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 863-877 (2012)
http://dx.doi.org/10.1364/BOE.3.000863


View Full Text Article

Enhanced HTML    Acrobat PDF (3224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Since the characterization of the eye’s monochromatic aberration fluctuations in 2001, the power spectrum has remained the most widely used method for analyzing their dynamics. However, the power spectrum does not capture the complexities of the fluctuations. We measured the monochromatic aberration dynamics of six subjects using a Shack-Hartmann sensor sampling at 21 Hz. We characterized the dynamics using techniques from chaos theory. We found that the attractor embedding dimension for all aberrations, for all subjects, was equal to three. The embedding lag averaged across aberrations and subjects was 0.31 ± 0.07 s. The Lyapunov exponent of the rms wavefront error was positive for each subject, with an average value of 0.44 ± 0.15 µm/s. This indicates that the aberration dynamics are chaotic. Implications for future modeling are discussed.

© 2012 OSA

OCIS Codes
(330.4875) Vision, color, and visual optics : Optics of physiological systems
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Ophthalmology Applications

History
Original Manuscript: February 27, 2012
Revised Manuscript: March 25, 2012
Manuscript Accepted: March 30, 2012
Published: April 5, 2012

Citation
Karen M. Hampson and Edward A. H. Mallen, "Chaos in ocular aberration dynamics of the human eye," Biomed. Opt. Express 3, 863-877 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-863


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “J. L. Aragόn, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001). [CrossRef]
  2. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express11(20), 2597–2605 (2003). [CrossRef] [PubMed]
  3. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express11(21), 2704–2716 (2003). [CrossRef] [PubMed]
  4. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, “Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system,” J. Opt. Soc. Am. A22(7), 1241–1250 (2005). [CrossRef] [PubMed]
  5. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Binocular correlation of ocular aberration dynamics,” Opt. Express16(19), 14731–14745 (2008). [CrossRef] [PubMed]
  6. A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt.29(3), 256–263 (2009). [CrossRef] [PubMed]
  7. M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt.26(5), 439–446 (2006). [CrossRef] [PubMed]
  8. M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt.24(6), 562–571 (2004). [CrossRef] [PubMed]
  9. B. Sahin, B. Lamory, X. Levecq, F. Harms, and C. Dainty, “Adaptive optics with pupil tracking for high resolution retinal imaging,” Biomed. Opt. Express3(2), 225–239 (2012). [CrossRef] [PubMed]
  10. K. M. Hampson and E. A. H. Mallen, “Multifractal nature of ocular aberration dynamics of the human eye,” Biomed. Opt. Express2(3), 464–470 (2011). [CrossRef] [PubMed]
  11. M. A. Savi, “Chaos and order in biomedical rhythms,” J. Braz. Soc. Mech. Sci. Eng.27(2), 157–169 (2005). [CrossRef]
  12. G. P. Williams, Chaos Theory Tamed (Joseph Henry Press, Washington DC, 1997).
  13. A. Casaleggio, S. Cerutti, and M. G. Signorini, “Study of the Lyapunov exponents in heart rate variability signals,” Methods Inf. Med.36(4-5), 274–277 (1997). [PubMed]
  14. W. S. Pritchard and D. W. Duke, “Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis,” Int. J. Neurosci.67(1-4), 31–80 (1992). [CrossRef] [PubMed]
  15. M. L. Rosenberg and M. H. Kroll, “Pupillary hippus: an unrecognized example of biological chaos,” J. Biol. Syst.7(01), 85–94 (1999). [CrossRef]
  16. C. D. Wagner, B. Nafz, and P. B. Persson, “Chaos in blood pressure control,” Cardiovasc. Res.31(3), 380–387 (1996). [PubMed]
  17. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt.55(4-5), 703–716 (2008). [CrossRef]
  18. Z. Liu, “Chaotic time series analysis,” Math. Probl. Eng.2010, 720190 (2010). [CrossRef]
  19. M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A45(6), 3403–3411 (1992). [CrossRef] [PubMed]
  20. Z. Y. Su, T. Wu, P. H. Yang, and Y. T. Wang, “Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach,” Physica A387(10), 2293–2305 (2008). [CrossRef]
  21. M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D65(1-2), 117–134 (1993). [CrossRef]
  22. C. Leahy and C. Dainty, “A non-stationary model for simulating the dynamics of ocular aberrations,” Opt. Express18(20), 21386–21396 (2010). [CrossRef] [PubMed]
  23. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt.55(21), 3425–3467 (2008). [CrossRef]
  24. M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng.57(2), 373–383 (2010). [CrossRef] [PubMed]
  25. L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, and A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng.34(3), 711–716 (1995). [CrossRef]
  26. I. Suzuki, “Corneal pulsation and corneal pulse waves,” Jpn. J. Ophthalmol.6, 190–194 (1962).
  27. B. Gros, D. Pope, and T. Cohn, “Involuntary oculomotor events time-locked to the arterial pulse,” Invest. Ophthalmol. Vis. Sci.32, 895 (1991).
  28. A. S. Eadie, B. Winn, and J. R. Pugh, “The influence of arterial pulse on miniature eye movements,” Invest. Ophthalmol. Vis. Sci.35, 2037 (1994).
  29. K. Nanba, T. Nakayama, and K. Iwata, “Variation of intraocular pressure by non-contact tonometry and cardiac pulse wave,” Nippon Ganka Gakkai Zasshi93(2), 155–160 (1989). [PubMed]
  30. D. R. Trew, C. B. James, S. H. L. Thomas, R. Sutton, and S. E. Smith, “Factors influencing the ocular pulse--the heart rate,” Graefes Arch. Clin. Exp. Ophthalmol.229(6), 553–556 (1991). [CrossRef] [PubMed]
  31. K. M. Daum and G. A. Fry, “Pupillary micro movements apparently related to pulse frequency,” Vision Res.22(1), 173–177 (1982). [CrossRef] [PubMed]
  32. H. Yoshimatsu and M. Yamada, “High-dimensional chaos of miniature eye movements,” Proc. IEEE Eng. Med. Biol. Soc.13, 1513–1515 (1991).
  33. C. S. Poon and C. K. Merrill, “Decrease of cardiac chaos in congestive heart failure,” Nature389(6650), 492–495 (1997). [CrossRef] [PubMed]
  34. R. E. Ganz, G. Weibels, K. H. Stäcker, P. M. Faustmann, and C. W. Zimmermann, “The Lyapunov exponent of heart rate dynamics as a sensitive marker of central autonomic organization: an exemplary study of early multiple sclerosis,” Int. J. Neurosci.71(1-4), 29–36 (1993). [CrossRef] [PubMed]
  35. W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988). [CrossRef] [PubMed]
  36. M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res.35(17), 2491–2502 (1995). [PubMed]
  37. B. Winn, “Accommodative microfluctuations: a mechanism for steady-state control of accommodation,” in Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter, and L. Stark, eds. (Birkhäuser Verlag Basel, Switzerland, 2000), pp. 129–140.
  38. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 4 (2009). [CrossRef] [PubMed]
  39. C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988). [CrossRef] [PubMed]
  40. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 7 (2005). [CrossRef] [PubMed]
  41. M. Day, D. Seidel, L. S. Gray, and N. C. Strang, “The effect of modulating ocular depth of focus upon accommodation microfluctuations in myopic and emmetropic subjects,” Vision Res.49(2), 211–218 (2009). [CrossRef] [PubMed]
  42. J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986). [CrossRef] [PubMed]
  43. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis.4(4), 9 (2004). [CrossRef] [PubMed]
  44. L. Diaz-Santana, V. Guériaux, G. Arden, and S. Gruppetta, “New methodology to measure the dynamics of ocular wave front aberrations during small amplitude changes of accommodation,” Opt. Express15(9), 5649–5663 (2007). [CrossRef] [PubMed]
  45. K. M. Hampson, E. A. H. Mallen, and C. Dainty, “Coherence function analysis of the higher-order aberrations of the human eye,” Opt. Lett.31(2), 184–186 (2006). [CrossRef] [PubMed]
  46. S. Gruppetta, F. Lacombe, and P. Puget, “Study of the dynamic aberrations of the human tear film,” Opt. Express13(19), 7631–7636 (2005). [CrossRef] [PubMed]
  47. S. S. Chin, “Adaptive optics, aberration dynamics and accommodation control,” Ph.D. thesis (Bradford School of Optometry and vision science, University of Bradford, Bradford, 2009).
  48. L. N. Davies, J. S. Wolffsohn, and B. Gilmartin, “Cognition, ocular accommodation, and cardiovascular function in emmetropes and late-onset myopes,” Invest. Ophthalmol. Vis. Sci.46(5), 1791–1796 (2005). [CrossRef] [PubMed]
  49. B. Sahin, “Correction of the aberrations of the eye using adaptive optics with pupil tracking,” Ph.D. thesis (School of Physics, National University of Ireland, Galway, 2011).
  50. D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Vis. Sci.44(3), 1035–1041 (2003). [CrossRef] [PubMed]
  51. B. B. Ferreira, A. S. de Paula, and M. A. Savi, “Chaos control applied to heart rhythm dynamics,” Chaos Solitons Fractals44(8), 587–599 (2011). [CrossRef]
  52. S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto, “Controlling chaos in the brain,” Nature370(6491), 615–620 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited