OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 899–910

Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements

Rakesh Singh Moirangthem, Mohammad Tariq Yaseen, Pei-Kuen Wei, Ji-Yen Cheng, and Yia-Chung Chang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 899-910 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cost-effective, stable and ultrasensitive localized surface plasmon resonance (LSPR) sensor based on gold nanoparticles (AuNPs) partially embedded in transparent substrate is presented. Partially embedded AuNPs were prepared by thermal annealing of gold thin films deposited on glass at a temperature close to the glass transition temperature of the substrate. Annealed samples were optically characterized by using spectroscopic ellipsometry and compare with theoretical modeling to understand the optical responses from the samples. By combining the partially-embedded AuNPs substrate with a microfluidic flow cell and dove prism in an ellipsometry setup, an ultrasensitive change in the LSPR signal can be detected. The refractive index sensitivity obtained from the phase measurement is up to 1938 degrees/RIU which is several times higher than that of synthesized colloidal gold nanoparticles. The sample is further used to investigate the interactions between primary and secondary antibodies. The bio-molecular detection limit of the LSPR signal is down to 20 pM. Our proposed sensor is label free, non-destructive, with high sensitivity, low cost, and easy to fabricate. These features make it feasible for commercialization in biomedical applications.

© 2012 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Nanotechnology and Plasmonics

Original Manuscript: February 10, 2012
Revised Manuscript: March 23, 2012
Manuscript Accepted: April 4, 2012
Published: April 9, 2012

Rakesh Singh Moirangthem, Mohammad Tariq Yaseen, Pei-Kuen Wei, Ji-Yen Cheng, and Yia-Chung Chang, "Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements," Biomed. Opt. Express 3, 899-910 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003). [CrossRef]
  3. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005). [CrossRef] [PubMed]
  4. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002). [CrossRef] [PubMed]
  5. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010). [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011). [CrossRef] [PubMed]
  8. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005). [CrossRef] [PubMed]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25(6), 372–374 (2000). [CrossRef] [PubMed]
  10. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004). [CrossRef] [PubMed]
  11. T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008). [CrossRef] [PubMed]
  12. X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010). [CrossRef] [PubMed]
  13. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001). [CrossRef] [PubMed]
  14. T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009). [CrossRef]
  15. T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008). [CrossRef]
  16. O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011). [CrossRef] [PubMed]
  17. O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011). [CrossRef]
  18. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004). [CrossRef] [PubMed]
  19. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998). [CrossRef]
  20. R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010). [CrossRef] [PubMed]
  21. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  22. A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010). [CrossRef]
  23. D. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982). [CrossRef]
  24. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973). [CrossRef]
  25. J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005). [CrossRef]
  26. D. Aspnes, “Plasmonics and effective-medium theories,” Thin Solid Films519(9), 2571–2574 (2011). [CrossRef]
  27. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011). [CrossRef]
  28. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011). [CrossRef]
  29. I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004). [CrossRef]
  30. R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011). [CrossRef] [PubMed]
  31. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996). [CrossRef]
  32. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  33. D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).
  34. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci.241, 20–22 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited