OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 911–919

Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility

David W. Cadotte, Adrian Mariampillai, Adam Cadotte, Kenneth K. C. Lee, Tim-Rasmus Kiehl, Brian C. Wilson, Michael G. Fehlings, and Victor X. D. Yang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 911-919 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) has the combined advantage of high temporal (µsec) and spatial (<10µm) resolution. These features make it an attractive tool to study the dynamic relationship between neural activity and the surrounding blood vessels in the spinal cord, a topic that is poorly understood. Here we present work that aims to optimize an in vivo OCT imaging model of the rodent spinal cord. In this study we image the microvascular networks of both rats and mice using speckle variance OCT. This is the first report of depth resolved imaging of the in vivo spinal cord using an entirely endogenous contrast mechanism.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: February 7, 2012
Revised Manuscript: March 24, 2012
Manuscript Accepted: March 31, 2012
Published: April 10, 2012

David W. Cadotte, Adrian Mariampillai, Adam Cadotte, Kenneth K. C. Lee, Tim-Rasmus Kiehl, Brian C. Wilson, Michael G. Fehlings, and Victor X. D. Yang, "Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility," Biomed. Opt. Express 3, 911-919 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995). [PubMed]
  2. E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002). [CrossRef] [PubMed]
  3. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002). [CrossRef] [PubMed]
  4. F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009). [CrossRef] [PubMed]
  7. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  8. V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011). [CrossRef] [PubMed]
  9. Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011). [CrossRef] [PubMed]
  10. B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009). [CrossRef] [PubMed]
  11. D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012). [CrossRef] [PubMed]
  12. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt.49(8), 1219–1233 (2010). [CrossRef] [PubMed]
  13. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express3(2), 360–365 (2012). [CrossRef] [PubMed]
  14. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011). [CrossRef] [PubMed]
  15. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011). [CrossRef] [PubMed]
  16. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  17. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  18. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  19. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  20. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  21. M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011). [CrossRef] [PubMed]
  22. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef]
  23. J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010). [CrossRef] [PubMed]
  24. P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009). [CrossRef] [PubMed]
  25. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MP4 (3703 KB)     
» Media 2: MP4 (3663 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited