OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 943–957

Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography

Venkaiah C. Kavuri, Zi-Jing Lin, Fenghua Tian, and Hanli Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 943-957 (2012)
http://dx.doi.org/10.1364/BOE.3.000943


View Full Text Article

Enhanced HTML    Acrobat PDF (1941 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: In diffuse optical tomography (DOT), researchers often face challenges to accurately recover the depth and size of the reconstructed objects. Recent development of the Depth Compensation Algorithm (DCA) solves the depth localization problem, but the reconstructed images commonly exhibit over-smoothed boundaries, leading to fuzzy images with low spatial resolution. While conventional DOT solves a linear inverse model by minimizing least squares errors using L2 norm regularization, L1 regularization promotes sparse solutions. The latter may be used to reduce the over-smoothing effect on reconstructed images. In this study, we combined DCA with L1 regularization, and also with L2 regularization, to examine which combined approach provided us with an improved spatial resolution and depth localization for DOT. Laboratory tissue phantoms were utilized for the measurement with a fiber-based and a camera-based DOT imaging system. The results from both systems showed that L1 regularization clearly outperformed L2 regularization in both spatial resolution and depth localization of DOT. An example of functional brain imaging taken from human in vivo measurements was further obtained to support the conclusion of the study.

© 2012 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: January 6, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 5, 2012
Published: April 12, 2012

Citation
Venkaiah C. Kavuri, Zi-Jing Lin, Fenghua Tian, and Hanli Liu, "Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography," Biomed. Opt. Express 3, 943-957 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  2. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009). [CrossRef]
  3. T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010). [CrossRef]
  4. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005). [CrossRef] [PubMed]
  5. C. K. Lee, C. W. Sun, P. L. Lee, H. C. Lee, C. Yang, C. P. Jiang, Y. P. Tong, T. C. Yeh, and J. C. Hsieh, “Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling,” Opt. Express13(21), 8339–8348 (2005). [CrossRef] [PubMed]
  6. H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010). [CrossRef] [PubMed]
  7. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38(13), 2950–2961 (1999). [CrossRef] [PubMed]
  8. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003). [CrossRef] [PubMed]
  9. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010). [CrossRef] [PubMed]
  10. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007). [CrossRef] [PubMed]
  11. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15(21), 13695–13708 (2007). [CrossRef] [PubMed]
  12. M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express18(23), 23676–23690 (2010). [CrossRef] [PubMed]
  13. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).
  14. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  15. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  16. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  17. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  18. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11(10), 2727–2741 (1994). [CrossRef] [PubMed]
  19. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003). [CrossRef] [PubMed]
  20. C. R. Vogel, Computational Methods for Inverse Problems (Society for Industrial and Applied Mathematics, 2002).
  21. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  22. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007). [CrossRef]
  23. M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996). [CrossRef]
  24. “PMI Toolbox,” http://www.nmr.mgh.harvard.edu/PMI/resources/toolbox.htm .
  25. “L1-ls Toolbox,” http://www.stanford.edu/~boyd/l1_ls/ .
  26. F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010). [CrossRef] [PubMed]
  27. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt.48(13), 2496–2504 (2009). [CrossRef] [PubMed]
  28. Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012). [CrossRef]
  29. Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006). [CrossRef] [PubMed]
  30. X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43(5), 1053–1062 (2004). [CrossRef] [PubMed]
  31. C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002). [CrossRef]
  32. X. Cheng and D. Boas, “Diffuse optical reflection tomography using continuous wave illumination,” Opt. Express3(3), 118–123 (1998). [CrossRef] [PubMed]
  33. L. Zhou, B. Yazıcı, A. B. Ale, and V. Ntziachristos, “Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data,” Opt. Lett.35(22), 3727–3729 (2010). [CrossRef] [PubMed]
  34. D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011). [CrossRef] [PubMed]
  35. F. Tian, M. R. Delgado, S. C. Dhamne, B. Khan, G. Alexandrakis, M. I. Romero, L. Smith, D. Reid, N. J. Clegg, and H. Liu, “Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy,” Opt. Express18(25), 25973–25986 (2010). [CrossRef] [PubMed]
  36. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006). [CrossRef] [PubMed]
  37. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  38. Z. J. Lin, H. Niu, and H. Liu, “Feasibility study of volumetric diffuse optical tomography in small animal using CCD-camera-based imaging system,” OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD108.
  39. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006). [CrossRef] [PubMed]
  40. R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009). [CrossRef]
  41. B. Khan, P. Chand, and G. Alexandrakis, “Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging,” Biomed. Opt. Express2(12), 3367–3386 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited