OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 958–965

Quantitative phase spectroscopy

Matthew Rinehart, Yizheng Zhu, and Adam Wax  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 5, pp. 958-965 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantitative phase spectroscopy is presented as a novel method of measuring the wavelength-dependent refractive index of microscopic volumes. Light from a broadband source is filtered to an ~5 nm bandwidth and rapidly tuned across the visible spectrum in 1 nm increments by an acousto-optic tunable filter (AOTF). Quantitative phase images of semitransparent samples are recovered at each wavelength using off-axis interferometry and are processed to recover relative and absolute dispersion measurements. We demonstrate the utility of this approach by (i) spectrally averaging phase images to reduce coherent noise, (ii) measuring absorptive and dispersive features in microspheres, and (iii) quantifying bulk hemoglobin concentrations by absolute refractive index measurements. Considerations of using low coherence illumination and the extension of spectral techniques in quantitative phase measurements are discussed.

© 2012 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.3170) Microscopy : Interference microscopy
(300.0300) Spectroscopy : Spectroscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(090.6186) Holography : Spectral holography

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: March 14, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 10, 2012
Published: April 12, 2012

Matthew Rinehart, Yizheng Zhu, and Adam Wax, "Quantitative phase spectroscopy," Biomed. Opt. Express 3, 958-965 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Rinehart, T. K. Drake, F. E. Robles, L. C. Rohan, D. Katz, and A. Wax, “Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy,” J. Biomed. Opt.16(12), 120510 (2011). [CrossRef] [PubMed]
  2. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett.34(23), 3668–3670 (2009). [CrossRef] [PubMed]
  3. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express1(2), 347–353 (2010). [CrossRef] [PubMed]
  4. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett.35(15), 2612–2614 (2010). [CrossRef] [PubMed]
  5. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett.33(7), 744–746 (2008). [CrossRef] [PubMed]
  6. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006). [CrossRef] [PubMed]
  7. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express19(24), 24005–24022 (2011). [CrossRef] [PubMed]
  8. Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express19(8), 7587–7595 (2011). [CrossRef] [PubMed]
  9. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express17(18), 15585–15591 (2009). [CrossRef] [PubMed]
  10. Life Technologies, “FluoSpheres®,” http://probes.invitrogen.com/media/spectra/data/8809h2o.txt .
  11. R. K. Ahrenkiel, “Modified Kramers-Kronig analysis of optical spectra,” J. Opt. Soc. Am.61(12), 1651–1655 (1971). [CrossRef]
  12. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett.36(23), 4665–4667 (2011). [CrossRef] [PubMed]
  13. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19(3), 677–717 (1990). [CrossRef]
  14. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010). [CrossRef] [PubMed]
  15. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol.56(13), 4013–4021 (2011). [CrossRef] [PubMed]
  16. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am.47(6), 545–556 (1957). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited