OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1141–1148

Numerical comparison of X-ray differential phase contrast and attenuation contrast

Dieter Hahn, Pierre Thibault, Martin Bech, Marco Stockmar, Simone Schleede, Irene Zanette, Alexander Rack, Timm Weitkamp, Aniko Sztrókay, Thomas Schlossbauer, Fabian Bamberg, Maximilian Reiser, and Franz Pfeiffer  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 6, pp. 1141-1148 (2012)
http://dx.doi.org/10.1364/BOE.3.001141


View Full Text Article

Enhanced HTML    Acrobat PDF (2163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical tool to compare directly the contrast-to-noise-ratio (CNR) of the attenuation- and differential phase-contrast signals available from grating-based X-ray imaging for single radiographs. The attenuation projection is differentiated to bring it into a modality comparable to the differential phase projection using a Gaussian derivative filter. A Relative Contrast Gain (RCG) is then defined as the ratio of the CNR of image values in a region of interest (ROI) in the differential phase projection to the CNR of image values in the same ROI in the differential attenuation projection. We apply the method on experimental data of human breast tissue acquired using a grating interferometer to compare the two contrast modes for two regions of interest differing in the type of tissue. Our results indicate that the proposed method can be used as a local estimate of the spatial distribution of the ratio δ/β, i.e., real and imaginary part of the complex refractive index, across a sample.

© 2012 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(110.7440) Imaging systems : X-ray imaging

ToC Category:
X-Ray Microscopy and Imaging

History
Original Manuscript: January 31, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 14, 2012
Published: April 27, 2012

Citation
Dieter Hahn, Pierre Thibault, Martin Bech, Marco Stockmar, Simone Schleede, Irene Zanette, Alexander Rack, Timm Weitkamp, Aniko Sztrókay, Thomas Schlossbauer, Fabian Bamberg, Maximilian Reiser, and Franz Pfeiffer, "Numerical comparison of X-ray differential phase contrast and attenuation contrast," Biomed. Opt. Express 3, 1141-1148 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-6-1141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Bonse and M. Hart, “An x-ray interferometer with long separated interfering beam paths,” Appl. Phys. Lett.6, 155–156 (1965). [CrossRef]
  2. R. Fitzgerald, “Phase-sensitive x-ray imaging,” Phys. Today53, 23–26 (2000). [CrossRef]
  3. A. Momose, “Phase-sensitive imaging and phase tomography using x-ray interferometers,” Opt. Express11, 2303–2314 (2003). [CrossRef] [PubMed]
  4. A. Momose, T. Takeda, A. Yoneyama, I. Koyama, and Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci.17(Suppl.), i527–i530 (2001).
  5. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys.42, L866–L868 (2003). [CrossRef]
  6. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys.2, 258–261 (2006). [CrossRef]
  7. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98, 105–108 (2007). [CrossRef]
  8. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13, 6296–6304 (2005). [CrossRef] [PubMed]
  9. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography.” Phys. Med. Biol.52, 6923–6930 (2007). [CrossRef] [PubMed]
  10. G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast.” J. R. Soc. Interface7(53), 1665–1676 (2010). [CrossRef] [PubMed]
  11. T. Weitkamp, I. Zanette, C. David, J. Baruchel, M. Bech, P. Bernard, H. Deyhle, T. Donath, J. Kenntner, S. Lang, J. Mohr, B. Müller, F. Pfeiffer, E. Reznikova, S. Rutishauser, G. Schulz, A. Tapfer, and J.-P. Valade, “Recent developments in x-ray Talbot interferometry at ESRF-ID19,” Proc. SPIE7804, 780406 (2010). [CrossRef]
  12. J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, and C. David, “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express17, 10010–10018 (2009). [CrossRef] [PubMed]
  13. G.-H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38, 584–588 (2011). [CrossRef] [PubMed]
  14. J. Zambelli, N. Bevins, Z. Qi, and G.-H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37, 2473–2479 (2010). [CrossRef] [PubMed]
  15. K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Meth. A648, 202–207 (2010). [CrossRef]
  16. M. Bech, “X-ray imaging with a grating interferometer,” Ph.D. thesis, University of Copenhagen (2009).
  17. T. Thuering, P. Modregger, B. R. Pinzer, Z. Wang, and M. Stampanoni, “Non-linear regularized phase retrieval for unidirectional X-ray differential phase contrast radiography,” Opt. Express19, 25545–25558 (2011). [CrossRef]
  18. J. Hsieh, Computed Tomography - Principles, Design, Artifacts, and Recent Advances, 2nd ed. (Wiley, Hoboken, NJ, 2009).
  19. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, Upper Saddle River, NJ, 1999).
  20. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Vol. 3 of Texts in Computer Science (Pearson Prentice Hall, Upper Saddle River, NJ, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited