OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1149–1161

Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

Wei-Cheng Kuo, Jongsik Kim, Nathan D. Shemonski, Eric J. Chaney, Darold R. Spillman, Jr., and Stephen A. Boppart  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1149-1161 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5486 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.

© 2012 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 21, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 26, 2012
Published: April 30, 2012

Wei-Cheng Kuo, Jongsik Kim, Nathan D. Shemonski, Eric J. Chaney, Darold R. Spillman, and Stephen A. Boppart, "Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system," Biomed. Opt. Express 3, 1149-1161 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kriege, C. T. Brekelmans, C. Boetes, P. E. Besnard, H. M. Zonderland, I. M. Obdeijn, R. A. Manoliu, T. Kok, H. Peterse, M. M. Tilanus-Linthorst, S. H. Muller, S. Meijer, J. C. Oosterwijk, L. V. Beex, R. A. Tollenaar, H. J. de Koning, E. J. Rutgers, J. G. Klijn, and Magnetic Resonance Imaging Screening Study Group, “Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition,” N. Engl. J. Med.351(5), 427–437 (2004). [CrossRef] [PubMed]
  2. D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA292(22), 2735–2742 (2004). [CrossRef] [PubMed]
  3. C. Wiratkapun, B. Wibulpholprasert, S. Wongwaisayawan, and K. Pulpinyo, “Nondiagnostic core needle biopsy of the breast under imaging guidance: result of rebiopsy,” J. Med. Assoc. Thai.88(3), 350–357 (2005). [PubMed]
  4. R. M. Pijnappel, M. van den Donk, R. Holland, W. P. Mali, J. L. Peterse, J. H. Hendriks, and P. H. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer90(3), 595–600 (2004). [CrossRef] [PubMed]
  5. P. M. Rich, M. J. Michell, S. Humphreys, G. P. Howes, and H. B. Nunnerley, “Stereotactic 14G core biopsy of non-palpable breast cancer: what is the relationship between the number of core samples taken and the sensitivity for detection of malignancy?” Clin. Radiol.54(6), 384–389 (1999). [CrossRef] [PubMed]
  6. D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, “Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy,” Radiology198(2), 323–325 (1996). [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  8. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Informa Healthcare, London, 2001).
  9. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  10. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009). [CrossRef] [PubMed]
  11. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt.10(1), 011006 (2005). [CrossRef] [PubMed]
  12. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  13. A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt.11(5), 054015 (2006). [CrossRef] [PubMed]
  14. M. Mujat, R. D. Ferguson, D. X. Hammer, C. Gittins, and N. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt.14(3), 034040 (2009). [CrossRef] [PubMed]
  15. A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat.8(5), 315–321 (2009). [PubMed]
  16. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  17. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express18(14), 14375–14384 (2010). [CrossRef] [PubMed]
  18. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000). [CrossRef] [PubMed]
  19. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007). [CrossRef] [PubMed]
  20. N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009). [CrossRef] [PubMed]
  21. A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Opt. Express15(8), 4787–4794 (2007). [CrossRef] [PubMed]
  22. W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt.15(6), 066027 (2010). [CrossRef] [PubMed]
  23. J. H. Hwang, M. J. Cobb, M. B. Kimmey, and X. Li, “Optical coherence tomography imaging of the pancreas: a needle-based approach,” Clin. Gastroenterol. Hepatol.3(7Suppl 1), S49–S52 (2005). [CrossRef] [PubMed]
  24. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011). [CrossRef] [PubMed]
  25. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011). [CrossRef] [PubMed]
  26. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  27. J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt.16(2), 020505 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (9395 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited