OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1200–1214

Three-dimensional phantoms for curvature correction in spatial frequency domain imaging

Thu T. A. Nguyen, Hanh N. D. Le, Minh Vo, Zhaoyang Wang, Long Luu, and Jessica C. Ramella-Roman  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1200-1214 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The sensitivity to surface profile of non-contact optical imaging, such as spatial frequency domain imaging, may lead to incorrect measurements of optical properties and consequently erroneous extrapolation of physiological parameters of interest. Previous correction methods have focused on calibration-based, model-based, and computation-based approached. We propose an experimental method to correct the effect of surface profile on spectral images. Three-dimensional (3D) phantoms were built with acrylonitrile butadiene styrene (ABS) plastic using an accurate 3D imaging and an emergent 3D printing technique. In this study, our method was utilized for the correction of optical properties (absorption coefficient μa and reduced scattering coefficient μs′) of objects obtained with a spatial frequency domain imaging system. The correction method was verified on three objects with simple to complex shapes. Incorrect optical properties due to surface with minimum 4 mm variation in height and 80 degree in slope were detected and improved, particularly for the absorption coefficients. The 3D phantom-based correction method is applicable for a wide range of purposes. The advantages and drawbacks of the 3D phantom-based correction methods are discussed in details.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 21, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 27, 2012
Published: May 3, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Thu T. A. Nguyen, Hanh N. D. Le, Minh Vo, Zhaoyang Wang, Long Luu, and Jessica C. Ramella-Roman, "Three-dimensional phantoms for curvature correction in spatial frequency domain imaging," Biomed. Opt. Express 3, 1200-1214 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vogel, V. V. Chernomordik, J. D. Riley, M. Hassan, F. Amyot, B. Dasgeb, S. G. Demos, R. Pursley, R. F. Little, R. Yarchoan, Y. Tao, and A. H. Gandjbakhche, “Using noninvasive multispectral imaging to quantitatively assess tissue vasculature,” J. Biomed. Opt.12(5), 051604 (2007). [CrossRef] [PubMed]
  2. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express17(18), 15670–15678 (2009). [CrossRef] [PubMed]
  3. S. L. Jacques, Spectroscopic determination of tissue optical properties using optical fiber spectrometer, available at http://omlc.ogi.edu/news/apr08/skinspectra/index.html
  4. F. C. Delori, “Noninvasive technique for oximetry of blood in retinal vessels,” Appl. Opt.27(6), 1113–1125 (1988). [CrossRef] [PubMed]
  5. J. C. Ramella-Roman and S. C. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13, 0000­9999 (2007).
  6. K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen.15(3), 332–340 (2007). [CrossRef] [PubMed]
  7. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  8. D. J. Cuccia, “Modulated imaging: a spatial frequency domain imaging method for wide-field spectroscopy and tomography of turbid media,” Ph.D thesis (Department of Biomedical Engineering, University of California Irvine, 2006).
  9. A. Bassi, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Spatial shift of spatially modulated light projected on turbid media,” J. Opt. Soc. Am. A25(11), 2833–2839 (2008). [CrossRef] [PubMed]
  10. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  11. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt.14(3), 034045 (2009). [CrossRef] [PubMed]
  12. J. M. Kainerstorfer, F. Amyot, M. Ehler, M. Hassan, S. G. Demos, V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Direct curvature correction for noncontact imaging modalities applied to multispectral imaging,” J. Biomed. Opt.15(4), 046013 (2010). [CrossRef] [PubMed]
  13. M. Ehler, J. M. Kainerstorfer, D. Cunningham, M. Bono, B. P. Brooks, and R. F. Bonner, “Extended correction model for retinal optical imaging”, in Conf. Proc. Computational Advances in Bio and Medical Sciences, 93–98 (2011).
  14. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000). [CrossRef] [PubMed]
  15. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001). [CrossRef] [PubMed]
  16. K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol.38(12), 1911–1922 (1993). [CrossRef] [PubMed]
  17. R. Grunert, G. Strauss, H. Moeckel, M. Hofer, A. Poessneck, U. Fickweiler, M. Thalheima, R. Schmiedel, P. Jannin, T. Schulz, J. Ocken, A. Dietz, and W. Korb, “ElePhant—an anatomical electronic phantom as simulation-system for otologic surgery,” in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS '06 (2006), vol. 1, pp. 4408–4411.
  18. M. A. Miller and G. D. Hutchins, “Development of anatomically realistic PET and PET/CT phantoms with rapid prototyping technology,” in IEEE Nuclear Science Symposium Conference Record,2007. NSS '07 (IEEE, 2007), pp. 4252–4257.
  19. A. D. Vescan, H. Chan, M. J. Daly, I. Witterick, J. C. Irish, and J. H. Siewerdsen, “C-arm cone beam CT guidance of sinus and skull base surgery: quantitative surgical performance evaluation and development of a novel high-fidelity phantom,” Proc. SPIE7261, 72610L, 72610L-10 (2009). [CrossRef]
  20. F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H.-U. Kauczor, and F. L. Giesel, “3D printing based on imaging data: review of medical applications,” Int. J. CARS5(4), 335–341 (2010). [CrossRef] [PubMed]
  21. A.-K. Carton, P. Bakic, C. Ullberg, and A. D. A. Maidment, “Development of a 3D high-resolution physical anthropomorphic breast phantom,” Proc. SPIE7622, 762206, 762206-8 (2010). [CrossRef]
  22. B. W. Miller, J. W. Moore, H. H. Barrett, T. Fryé, S. Adler, J. Sery, and L. R. Furenlid, “3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures,” Nucl. Instrum. Methods Phys. Res. A659(1), 262–268 (2011). [CrossRef] [PubMed]
  23. M. Vo, Z. Wang, T. Hoang, and D. Nguyen, “Flexible calibration technique for fringe-projection-based three-dimensional imaging,” Opt. Lett.35(19), 3192–3194 (2010). [CrossRef] [PubMed]
  24. T. T. A. Nguyen, J. W. Shupp, L. T. Moffatt, M. H. Jordan, E. J. Leto, and J. C. Ramella-Roman, “Assessment of the pathophysiology of injured tissue with an in vivo electrical injury model,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  25. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006). [CrossRef] [PubMed]
  26. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics3(2), 128–160 (2011). [CrossRef]
  27. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd. ed. (SPIE, 2007), Chap. 1.
  28. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  29. S. S. Maganti and A. P. Dhawan, “Optical nevoscope reconstructions using photon diffusion theory,” Proc. SPIE2979, 608–618 (1997). [CrossRef]
  30. E. J. Troy, A. C. Fazey, and E. Crook, “A new impact modifier for toughening clear APET,” in Society of Plastics Engineers Annual Technical Conference ANTEC (2000), Vol. 58, pp. 2841–2843.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited