OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1226–1240

Broadband ultraviolet-visible optical property measurement in layered turbid media

Quanzeng Wang, Du Le, Jessica Ramella-Roman, and Joshua Pfefer  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1226-1240 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to accurately measure layered biological tissue optical properties (OPs) may improve understanding of spectroscopic device performance and facilitate early cancer detection. Towards these goals, we have performed theoretical and experimental evaluations of an approach for broadband measurement of absorption and reduced scattering coefficients at ultraviolet-visible wavelengths. Our technique is based on neural network (NN) inverse models trained with diffuse reflectance data from condensed Monte Carlo simulations. Experimental measurements were performed from 350 to 600 nm with a fiber-optic-based reflectance spectroscopy system. Two-layer phantoms incorporating OPs relevant to normal and dysplastic mucosal tissue and superficial layer thicknesses of 0.22 and 0.44 mm were used to assess prediction accuracy. Results showed mean OP estimation errors of 19% from the theoretical analysis and 27% from experiments. Two-step NN modeling and nonlinear spectral fitting approaches helped improve prediction accuracy. While limitations and challenges remain, the results of this study indicate that our technique can provide moderately accurate estimates of OPs in layered turbid media.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 9, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 23, 2012
Published: May 3, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Quanzeng Wang, Du Le, Jessica Ramella-Roman, and Joshua Pfefer, "Broadband ultraviolet-visible optical property measurement in layered turbid media," Biomed. Opt. Express 3, 1226-1240 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009). [CrossRef] [PubMed]
  2. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007). [CrossRef] [PubMed]
  3. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  4. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  5. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008). [CrossRef] [PubMed]
  6. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005). [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt.37(10), 1958–1972 (1998). [CrossRef] [PubMed]
  8. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  9. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998). [CrossRef] [PubMed]
  10. T.-Y. Tseng, C.-Y. Chen, Y.-S. Li, and K.-B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express2(4), 901–914 (2011). [CrossRef] [PubMed]
  11. Y. S. Fawzi, A. B. M. Youssef, M. H. el-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt.42(31), 6398–6411 (2003). [CrossRef] [PubMed]
  12. Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt.49(28), 5309–5320 (2010). [CrossRef] [PubMed]
  13. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  14. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1025 (2007). [CrossRef] [PubMed]
  15. Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010). [CrossRef]
  16. D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003). [CrossRef] [PubMed]
  17. S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008). [CrossRef] [PubMed]
  18. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  19. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18(26), 26854–26865 (2010). [CrossRef] [PubMed]
  20. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006). [CrossRef] [PubMed]
  21. M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000). [CrossRef] [PubMed]
  22. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  23. Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003). [CrossRef] [PubMed]
  24. Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,” Opt. Express16(12), 8685–8703 (2008). [CrossRef] [PubMed]
  25. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt.39(25), 4733–4745 (2000). [CrossRef] [PubMed]
  26. J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008). [CrossRef]
  27. M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008). [CrossRef] [PubMed]
  28. C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007). [CrossRef] [PubMed]
  29. P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007). [CrossRef] [PubMed]
  30. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006). [CrossRef] [PubMed]
  31. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited