OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1274–1278

Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging

C D Saunter, S. Semprini, C. Buckley, J Mullins, and J M Girkin  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1274-1278 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we report the design, testing and use of a scannerless probe specifically for minimally invasive imaging of deep tissue in vivo with an epi-fluorescence modality. The probe images a 500 μm diameter field of view through a 710 μm outer diameter probe with a maximum tissue penetration depth of 15 mm specifically configured for eGFP imaging. Example results are given from imaging the pituitary gland of rats and zebrafish hearts with lateral resolution of 2.5 μm.

© 2012 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: March 23, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 30, 2012
Published: May 4, 2012

C D Saunter, S. Semprini, C. Buckley, J Mullins, and J M Girkin, "Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging," Biomed. Opt. Express 3, 1274-1278 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Semprini, S. Friedrichsen, C. V. Harper, J. R. McNeilly, A. D. Adamson, D. G. Spiller, N. Kotelevtseva, G. Brooker, D. G. Brownstein, A. S. McNeilly, M. R. White, J. R. Davis, and J. J. Mullins, “Real-time visualization of human prolactin alternate promoter usage in vivo using a double-transgenic rat model,” Mol. Endocrinol.23(4), 529–538 (2009). [CrossRef] [PubMed]
  2. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  3. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008). [CrossRef] [PubMed]
  4. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  5. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010). [CrossRef] [PubMed]
  6. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001). [CrossRef]
  7. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  8. X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun.281(7), 1833–1840 (2008). [CrossRef] [PubMed]
  9. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods8(10), 871–878 (2011). [CrossRef] [PubMed]
  10. V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express15(18), 11196–11206 (2007). [CrossRef] [PubMed]
  11. C. V. Harper, K. Featherstone, S. Semprini, S. Friedrichsen, J. McNeilly, P. Paszek, D. G. Spiller, A. S. McNeilly, J. J. Mullins, J. R. Davis, and M. R. White, “Dynamic organisation of prolactin gene expression in living pituitary tissue,” J. Cell Sci.123(3), 424–430 (2010). [CrossRef] [PubMed]
  12. R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry44(4), 273–294 (2001). [CrossRef] [PubMed]
  13. S. Inoue and K. Spring, Video Microscopy: The Fundamentals (Kluwer Academic/Plenum, New York, 1997).
  14. T. W. Gardiner and L. A. Toth, “Stereotactic surgery and long-term maintenance of cranial implants in research animals,” Contemp. Top. Lab. Anim. Sci.38(1), 56–63 (1999). [PubMed]
  15. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, (Academic, Sydney, 1986).
  16. C. G. Burns, D. J. Milan, E. J. Grande, W. Rottbauer, C. A. MacRae, and M. C. Fishman, “High-throughput assay for small molecules that modulate zebrafish embryonic heart rate,” Nat. Chem. Biol.1(5), 263–264 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited