OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1279–1290

Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities

Anthony N. Kuo, Ryan P. McNabb, Mingtao Zhao, Francesco LaRocca, Sandra S. Stinnett, Sina Farsiu, and Joseph A. Izatt  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1279-1290 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparison of corneal biometric values from dense volumetric spectral domain optical coherence tomography (SDOCT) scans to reference values in both phantoms and clinical subjects. We also present a new optically based “keratometric equivalent power” formula for SDOCT that eliminates previously described discrepancies between corneal power form SDOCT and existing clinical modalities. Phantom objects of varying radii of curvature and corneas of normal subjects were imaged with a clinical SDOCT system. The optically corrected three-dimensional surfaces were used to recover radii of curvature and power as appropriate. These were then compared to the manufacturer’s reference values in phantoms and to measurements from topography and Scheimpflug photography in subjects. In phantom objects, paired differences between SDOCT and reference values for radii of curvature were not statistically significant. In subjects, there were no significant paired differences between SDOCT and reference values from the other modalities for anterior radius and corneal keratometric power. In contrast to other studies, we found that dense volumetric scans with available SDOCT can be used to recover corneal biometric values—including power—that correspond well with existing clinical measurements.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 6, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 4, 2012
Published: May 8, 2012

Anthony N. Kuo, Ryan P. McNabb, Mingtao Zhao, Francesco LaRocca, Sandra S. Stinnett, Sina Farsiu, and Joseph A. Izatt, "Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities," Biomed. Opt. Express 3, 1279-1290 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol.70(2), 152–154 (1986). [CrossRef] [PubMed]
  2. E. Hecht, Optics (Addison Wesley, New York, NY, 2002).
  3. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE Press, Bellingham, WA, 2004).
  4. B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993). [CrossRef] [PubMed]
  7. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [CrossRef] [PubMed]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  9. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011). [CrossRef] [PubMed]
  10. M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011). [CrossRef] [PubMed]
  11. M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006). [CrossRef] [PubMed]
  12. M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010). [CrossRef] [PubMed]
  13. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  14. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011). [CrossRef] [PubMed]
  15. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011). [CrossRef] [PubMed]
  16. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010). [CrossRef] [PubMed]
  17. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  18. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett.29(1), 83–85 (2004). [CrossRef] [PubMed]
  19. D. Malacara and Z. Malacara, Handbook of Optical Design (Marcel Dekker, New York, NY, 2004).
  20. V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A23(3), 544–549 (2006). [CrossRef] [PubMed]
  21. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Boston, MA, 2002).
  22. N. E. Norrby, “Unfortunate discrepancies,” J. Cataract Refract. Surg.24(4), 433–434 (1998). [PubMed]
  23. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, New York, NY, 1950).
  24. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986). [CrossRef] [PubMed]
  25. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall/CRC, Washington, D.C., 1993).
  26. L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011). [CrossRef] [PubMed]
  27. J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008). [CrossRef] [PubMed]
  28. J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009). [CrossRef] [PubMed]
  29. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002). [CrossRef] [PubMed]
  30. J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990). [CrossRef] [PubMed]
  31. R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973). [CrossRef] [PubMed]
  32. C. Edmund, “Posterior corneal curvature and its influence on corneal dioptric power,” Acta Ophthalmol. (Copenh.)72(6), 715–720 (1994). [CrossRef] [PubMed]
  33. M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009). [CrossRef] [PubMed]
  34. S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009). [CrossRef] [PubMed]
  35. D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010). [CrossRef] [PubMed]
  36. C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009). [CrossRef] [PubMed]
  37. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011). [CrossRef] [PubMed]
  38. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  39. M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010). [CrossRef] [PubMed]
  40. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005). [CrossRef] [PubMed]
  41. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009). [CrossRef] [PubMed]
  42. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18(13), 13964–13980 (2010). [CrossRef] [PubMed]
  43. A. H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012). [CrossRef] [PubMed]
  44. T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19(4), 657–669 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited