OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1312–1325

Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms

HyeongGon Kang, Matthew L. Clarke, Silvia H. De Paoli Lacerda, Alamgir Karim, Leonard F. Pease, III, and Jeeseong Hwang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1312-1325 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Understanding the optical properties of clustered quantum dots (QDs) is essential to the design of QD-based optical phantoms for molecular imaging. Single and clustered core/shell colloidal QDs of dimers, trimers, and tetramers are self-assembled, separated, and preferentially collected using electrospray differential mobility analysis (ES-DMA) with electrostatic deposition. Multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the physicochemical and optical properties of QDs in a single or a clustered state. A multimodal time-correlated spectroscopic confocal microscope capable of simultaneously measuring the time evolution of PL intensity fluctuation, PL lifetime, and emission spectra reveals the long-term dynamic optical properties of interacting QDs in individual dimeric clusters of QDs. This new method will benefit research into the quantitative interpretation of fluorescence intensity and lifetime results in QD-based molecular imaging techniques. The process of photooxidation leads to coupling of the QDs in a dimer, leading to unique optical properties when compared to an isolated QD. These results guide the design and evaluation of QD-based phantom materials for the validation of the PL measurements for quantitative molecular imaging of biological samples labeled with QD probes.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.0160) Materials : Materials
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(270.0270) Quantum optics : Quantum optics

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 2, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 20, 2012
Published: May 9, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

HyeongGon Kang, Matthew L. Clarke, Silvia H. De Paoli Lacerda, Alamgir Karim, Leonard F. Pease, and Jeeseong Hwang, "Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms," Biomed. Opt. Express 3, 1312-1325 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Howarth, K. Takao, Y. Hayashi, and A. Y. Ting, “Targeting quantum dots to surface proteins in living cells with biotin ligase,” Proc. Natl. Acad. Sci. U.S.A.102(21), 7583–7588 (2005). [CrossRef] [PubMed]
  2. V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B110(34), 16827–16845 (2006). [CrossRef] [PubMed]
  3. S. Pathak, E. Cao, M. C. Davidson, S. H. Jin, and G. A. Silva, “Quantum dot applications to neuroscience: new tools for probing neurons and glia,” J. Neurosci.26(7), 1893–1895 (2006). [CrossRef] [PubMed]
  4. L. D. True and X. H. Gao, “Quantum dots for molecular pathology: their time has arrived,” J. Mol. Diagn.9(1), 7–11 (2007). [CrossRef] [PubMed]
  5. P. V. Kamat, “Quantum dot solar cells. semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C112, 18737–18753 (2008).
  6. F. Tokumasu, R. M. Fairhurst, G. R. Ostera, N. J. Brittain, J. Hwang, T. E. Wellems, and J. A. Dvorak, “Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots,” J. Cell Sci.118(5), 1091–1098 (2005). [CrossRef] [PubMed]
  7. V. Balzani, A. Credi, and M. Venturi, “Molecular machines working on surfaces and at interfaces,” ChemPhysChem9(2), 202–220 (2008). [CrossRef] [PubMed]
  8. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science291(5503), 451–453 (2001). [CrossRef] [PubMed]
  9. Z. P. Zhou, H. Kang, M. L. Clarke, S. H. D. Lacerda, M. H. Zhao, J. A. Fagan, A. Shapiro, T. Nguyen, and J. Hwang, “Water-soluble DNA-wrapped single-walled carbon-nanotube/quantum-dot complexes,” Small5(19), 2149–2155 (2009). [CrossRef] [PubMed]
  10. V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B77(19), 195324 (2008). [CrossRef]
  11. J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller, and V. I. Klimov, “New aspects of carrier multiplication in semiconductor nanocrystals,” Acc. Chem. Res.41(12), 1810–1819 (2008). [CrossRef] [PubMed]
  12. M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, and G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B107(41), 11346–11352 (2003). [CrossRef]
  13. S. W. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A.106(27), 10917–10921 (2009). [CrossRef] [PubMed]
  14. Y. Zhang, J. He, P. N. Wang, J. Y. Chen, Z. J. Lu, D. R. Lu, J. Guo, C. C. Wang, and W. L. Yang, “Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen,” J. Am. Chem. Soc.128(41), 13396–13401 (2006). [CrossRef] [PubMed]
  15. R. Edgar, M. McKinstry, J. Hwang, A. B. Oppenheim, R. A. Fekete, G. Giulian, C. Merril, K. Nagashima, and S. Adhya, “High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes,” Proc. Natl. Acad. Sci. U.S.A.103(13), 4841–4845 (2006). [CrossRef] [PubMed]
  16. P. B. Yim, M. L. Clarke, M. McKinstry, S. H. De Paoli Lacerda, L. F. Pease, M. A. Dobrovolskaia, H. G. Kang, T. D. Read, S. Sozhamannan, and J. S. Hwang, “Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection,” Biotechnol. Bioeng.104(6), 1059–1067 (2009). [CrossRef] [PubMed]
  17. H. G. Kang, F. Tokumasu, M. Clarke, Z. P. Zhou, J. Y. Tang, T. Nguyen, and J. Hwang, “Probing dynamic fluorescence properties of single and clustered quantum dots toward quantitative biomedical imaging of cells,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(1), 48–58 (2010). [CrossRef] [PubMed]
  18. S. Wang, C. Querner, M. D. Fischbein, L. Willis, D. S. Novikov, C. H. Crouch, and M. Drndic, “Blinking statistics correlated with nanoparticle number,” Nano Lett.8(11), 4020–4026 (2008). [CrossRef] [PubMed]
  19. X. Y. Wang, J. Y. Zhang, A. Nazzal, and M. Xiao, “Photo-oxidation-enhanced coupling in densely packed CdSe quantum-dot films,” Appl. Phys. Lett.83(1), 162–164 (2003). [CrossRef]
  20. M. Yu and A. Van Orden, “Enhanced fluorescence intermittency of CdSe-ZnS quantum-dot clusters,” Phys. Rev. Lett.97(23), 237402 (2006). [CrossRef] [PubMed]
  21. D. P. Shepherd, K. J. Whitcomb, K. K. Milligan, P. M. Goodwin, M. P. Gelfand, and A. Van Orden, “Fluorescence Intermittency and Energy Transfer in Small Clusters of Semiconductor Quantum Dots,” J. Phys. Chem. C114, 14831–14837 (2010).
  22. M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011). [CrossRef] [PubMed]
  23. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105(35), 8281–8284 (2001). [CrossRef]
  24. J. R. Krogmeier, H. Kang, M. L. Clarke, P. Yim, and J. Hwang, “Probing the dynamic fluorescence properties of single water-soluble quantum dots,” Opt. Commun.281(7), 1781–1788 (2008). [CrossRef]
  25. A. Y. Nazzal, X. Y. Wang, L. H. Qu, W. Yu, Y. J. Wang, X. G. Peng, and M. Xiao, “Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films,” J. Phys. Chem. B108(18), 5507–5515 (2004). [CrossRef]
  26. L. F. Pease, “Optimizing the yield and selectivity of high purity nanoparticle clusters,” J. Nanopart. Res.13(5), 2157–2172 (2011). [CrossRef]
  27. L. F. Pease, D. H. Tsai, J. L. Hertz, R. A. Zangmeister, M. R. Zachariah, and M. J. Tarlov, “Packing and size determination of colloidal nanoclusters,” Langmuir26(13), 11384–11390 (2010). [CrossRef] [PubMed]
  28. L. F. Pease, D. I. Lipin, D. H. Tsai, M. R. Zachariah, L. H. L. Lua, M. J. Tarlov, and A. P. J. Middelberg, “Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy,” Biotechnol. Bioeng.102(3), 845–855 (2009). [CrossRef] [PubMed]
  29. L. F. Pease, J. T. Elliott, D. H. Tsai, M. R. Zachariah, and M. J. Tarlov, “Determination of protein aggregation with differential mobility analysis: application to IgG antibody,” Biotechnol. Bioeng.101(6), 1214–1222 (2008). [CrossRef] [PubMed]
  30. D. H. Tsai, R. A. Zangmeister, L. F. Pease, M. J. Tarlov, and M. R. Zachariah, “Gas-phase ion-mobility characterization of SAM-functionalized Au nanoparticles,” Langmuir24(16), 8483–8490 (2008). [CrossRef] [PubMed]
  31. L. F. Pease, D. H. Tsai, R. A. Zangmeister, M. R. Zachariah, and M. J. Tarlov, “Quantifying the surface coverage of conjugate molecules on functionalized nanoparticles,” J. Phys. Chem. C111(46), 17155–17157 (2007). [CrossRef]
  32. H. G. Kang, M. L. Clarke, J. Y. Tang, J. T. Woodward, S. G. Chou, Z. P. Zhou, J. R. Simpson, A. R. H. Walker, T. Nguyen, and J. Hwang, “Multimodal, nanoscale, hyperspectral imaging demonstrated on heterostructures of quantum dots and DNA-wrapped single-wall carbon nanotubes,” ACS Nano3(11), 3769–3775 (2009). [CrossRef] [PubMed]
  33. A. Wiedensohler, “An approximation of the bipolar charge-distribution for particles in the sub-micron size range,” J. Aerosol Sci.19(3), 387–389 (1988). [CrossRef]
  34. R. Anumolu, J. A. Gustafson, J. J. Magda, J. Cappello, H. Ghandehari, and L. F. Pease, “Fabrication of highly uniform nanoparticles from recombinant silk-elastin-like protein polymers for therapeutic agent delivery,” ACS Nano5(7), 5374–5382 (2011). [CrossRef] [PubMed]
  35. L. F. Pease, J. I. Feldblyum, S. H. Depaoli Lacaerda, Y. L. Liu, A. R. Hight Walker, R. Anumolu, P. B. Yim, M. L. Clarke, H. G. Kang, and J. Hwang, “Structural analysis of soft multicomponent nanoparticle clusters,” ACS Nano4(11), 6982–6988 (2010). [CrossRef] [PubMed]
  36. J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: a novel role for biexcitons and auger ionization,” Nano Lett.9(1), 338–345 (2009). [CrossRef] [PubMed]
  37. G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88(13), 137401 (2002). [CrossRef] [PubMed]
  38. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011). [CrossRef] [PubMed]
  39. A. Issac, S. Y. Jin, and T. Q. Lian, “Intermittent electron transfer activity from single CdSe/ZnS quantum dots,” J. Am. Chem. Soc.130(34), 11280–11281 (2008). [CrossRef] [PubMed]
  40. V. Veilleux, D. Lachance-Quirion, K. Doré, D. B. Landry, P. G. Charette, and C. N. Allen, “Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics,” Nanotechnology21(13), 134024 (2010). [CrossRef] [PubMed]
  41. J. Tang, “The effects of anomalous diffusion on power-law blinking statistics of CdSe nanorods,” J. Chem. Phys.129(8), 084709 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited