OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1326–1339

Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials

Robert C. Chang, Peter Johnson, Christopher M. Stafford, and Jeeseong Hwang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1326-1339 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving optical coherent tomography (OCT) with general applicability to a variety of three-dimensional optical sectioning platforms. We implement a combinatorial bottom-up approach to prepare monolayers of light-scattering microspheres with interspersed layers of transparent polymer. A dense monolayer assembly of monodispersed microspheres is achieved via a combined methodology of polyelectrolyte multilayers (PEMs) for particle-substrate binding and convective particle flux for two-dimensional crystal array formation on a glass substrate. Modifications of key parameters in the layer-by-layer polyelectrolyte deposition approach are applied to optimize particle monolayer transfer from a glass substrate into an elastomer while preserving the relative axial positioning in the particle monolayer. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Step-wise determination of the phantom dimensions is performed independently of the optical system under test to enable precise spatial calibration, independent validation, and quantitative dimensional measurements.

© 2012 OSA

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(160.5470) Materials : Polymers
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.5820) Scattering : Scattering measurements

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 2, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 16, 2012
Published: May 9, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Robert C. Chang, Peter Johnson, Christopher M. Stafford, and Jeeseong Hwang, "Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials," Biomed. Opt. Express 3, 1326-1339 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000). [CrossRef] [PubMed]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  4. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  5. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011). [CrossRef]
  6. P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011). [CrossRef] [PubMed]
  7. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  9. R. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010). [CrossRef]
  10. R. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011). [CrossRef]
  11. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  12. R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express2(11), 3037–3046 (2011). [CrossRef] [PubMed]
  13. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology103(11), 1889–1898 (1996). [PubMed]
  14. O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.)21(19), 1897–1905 (2009). [CrossRef]
  15. T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir24(24), 13897–13903 (2008). [CrossRef] [PubMed]
  16. A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech.77(3), 031007 (2010). [CrossRef]
  17. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002). [CrossRef] [PubMed]
  18. W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges.100(6), 807–814 (1996).
  19. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature361(6407), 26 (1993). [CrossRef] [PubMed]
  20. C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum.77(2), 023908 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited